
Interrupts and Time

Real-Time Systems, Lecture 5

Martina Maggio

28 January 2016

Lund University, Department of Automatic Control

Content

[Real-Time Control System: Chapter 5]

1. Interrupts

2. Clock Interrupts

3. Time Primitives

4. Periodic Tasks

2

External Communication

A real-time system must communicate with the environment:

• A/D and D/A converters;

• serial and parallel ports;

• keyboard and mouse;

• bus interfaces;

• timers.

The communication can be based on (1) polling, (2) interrupts.

3

Interrupts

Interrupts

Interrupts are generated at the CPU hardware level, asynchronously.

When an interrupt is generated the execution is transfered to an interrupt

handler method.

Interrupt #2

Interrupt

Table

Interrupt Handler

Save Status

Restore Status

Save and restore

Program Counter

The Interrupt Table contains a mapping between the Interrupt Number

and the Interrupt Handler that should be called. The interrupt number is

known as the Interrupt Request (IRQ).
5

Interrupts

When an interrupt is received, the program counter is saved (and later

restored). The interrupt handler saves all the status of the registers it

uses and restore the status when it terminates.

The context can be saved:

• in the stack of the interrupted process;

• in a special stack common to all interrupts;

• in a specialized set of registers (DSPs, Power PC).

A context switch may be initiated from the interrupt handler. In this

case, the program counter will be restored to a di↵erent value when the

interrupt handler terminates.

6

Interrupt Priorities

Process

Interrupt #2

Interrupt #1

Interrupt #3

Handler

Level 3

Handler

Level 2

Handler

Level 1

7

Interrupt Priorities

Disabling the interrupts in the kernel causes all interrupt levels to be

disabled (hardware priorities).

• It is only possible to store a limited number of pending interrupts.

• Interrupts handlers need to be short and e�cient.

• Time consuming processing in device processes.

8

Time-based vs Event-based Kernels

Most real-time kernels are tick-based:

• A system clock gives interrupts at regular intervals;

• Typical tick intervals are 1 ms, 10 ms;

• Defines the time resolution of the kernel.

An event-based kernel relies on a high-precision timer to keep track of

time:

• No regular clock interrupts.

9

Clock Interrupts

Clock Interrupts

Process

Clock interrupt

T
ic

k

Clock Interrupt
 Handler

Clock Procedure

11

[STORK] Clock Procedure

1 PROCEDURE Clock;

2 VAR P: ProcessRef;

3 BEGIN

4 IncTime(Now,Tick); (* Now := Now + Tick *)

5 LOOP

6 P := TimeQueue^.succ;

7 IF CompareTime(P^.head.nextTime,Now) <= 0 THEN

8 MovePriority(P,ReadyQueue);

9 ELSE EXIT;

10 END;

11 END;

12 DEC(Running^.timer); (* Round-robin time slicing *)

13 IF Running^.timer <= 0 THEN

14 MovePriority(Running,ReadyQueue);

15 END;

16 Schedule;

17 END Clock;

12

[STORK] Clock Procedure

Now is a global variable that keeps track of the current time.

TimeQueue is a time-sorted list containing processes waiting on time.

Round-robin time-slicing within the same priority levels:

• if a process has executed longer than its time slice and other

processes with the same priority are ready then a context switch

takes place;

• used by the Linux real-time scheduling class SCHED RR.

The Linux real-time scheduling class SCHED FIFO does not use

round-robin within the same priority levels.

13

Event-based Clock Interrupts

Clock interrupts from a variable time source (e.g. high-resolution timer)

instead of a fixed clock.

When a process is inserted in TimeQueue the kernel sets up the timer to

give an interrupt at the wake-up time of the first process in TimeQueue.

When the clock interrupt occurs, a context switch to the first process is

performed and the timing chip is set up to give an interrupt at the

wake-up time of the new first process in TimeQueue.

14

[JAVA] Interrupts

In the native thread model each Java thread is mapped onto a separate

thread. Essentially as in STORK.

In the green thread model:

• The system level interrupt handling facility has no notion of Java

threads.

• When a Java thread performs a blocking operation the JVM

indicates that it wants to be informed by the operating system when

the associated interrupt occurs.

• The JVM Linux thread does not block until it has serviced all Java

threads that are Ready.

• When no Java threads are Ready, the JVM thread does a selective

wait on all the IO interrupts that it needs to be informed about. A

timeout is set to the time when the next sleeping Java thread should

execute.

15

[LINUX] Interrupts

The interrupt handler is known as the Interrupt Service Routine (ISR).

The conflicting goal of having ISRs that both execute fast and perform a

lot of work is solved by splitting them in two halves:

• the top half (the actual interrupt handler);

• the bottom half:

– executes at later stage (deferred until later);

– executes in a similar way as an ordinary task, but is more e�cient,

e.g., has a smaller context;

– compare with device processes;
– supported in multiple ways, like

* softirq,

* tasklet,

* work queue.

16

Exceptions

Many modern programming languages support software fault handling

using exceptions.

When a fault occurs in a piece of code, an exception is raised (or thrown).

The run-time system locates the closest handler for the exception and

transfers the execution to it.

Many similarities with interrupts:

• exceptions occur synchronously w.r.t. the processor clock, i.e. they

can be seen as synchronous interrupts generated by the processor;

• interrupts = asynchronous interrupts generated by the hardware.

17

Exceptions

Procedure A

Procedure B
Procedure CA calls B

B calls C

Exception X
 raised

Handler
for X

B terminates

18

[JAVA] Exception Handling

1 try {

2 // Perform some method calls that

3 // might throw exceptions.

4 } catch (Exception e) {

5 // Control transfered here if there

6 // is an exception. Handle the fault.

7 } finally {

8 // These lines are always executed. Clean-up.

9 }

19

Time Primitives

Wait Time Primitives

Two main types:

• Wait for a specified time interval:

• relative to current time;

• sleep (Java), delay (Ada), WaitTime (STORK).

• Wait until a specified time (more powerful):

• absolute time;

• delayuntil (Ada), WaitUntil (STORK);

• not available in Java.

21

Wait Time and Process States

Running Ready

Blocked

waiting event

When WaitTime/WaitUntil is called: process moved from Running to

Blocked (moved from ReadyQueue to TimeQueue). When time has

passed: process moved from Blocked to Ready (done in the Clock

procedure).

22

[STORK] Time Primitives

PROCEDURE Tick(): CARDINAL;

Returns the tick interval of the current machine in milliseconds. This

makes it possible to write real-time code that is portable between

platforms with di↵erent time resolution.

PROCEDURE CurrentTime(VAR t: Time);

Returns the current time (Now).

PROCEDURE IncTime(VAR t: Time, c: CARDINAL);

Increments the value of t with c milliseconds.

23

[STORK] Time Primitives

PROCEDURE CompareTime(VAR t1,t2: TIME): INTEGER;

Compares two time variables. Returns �1 if t1 < t2. Returns 0 if t1 =

t2. Returns 1 if t1 > t2.

PROCEDURE WaitUntil(t: Time);

Delays the calling process until Now � t. If Now is already larger than t

when WaitUntil is called it is a null operation.

PROCEDURE WaitTime(t: CARDINAL);

Delays the calling process for t milliseconds.

24

[STORK] Time Primitives: Implementation

1 PROCEDURE WaitUntil(t: Time);

2 BEGIN

3 Running^.head.nextTime := t;

4 MoveTime(Running,TimeQueue);

5 Schedule;

6 END WaitUntil;

7

8

9 PROCEDURE WaitTime(t: CARDINAL);

10 VAR next: Time;

11 BEGIN

12 CurrentTime(next);

13 IncTime(next,t);

14 WaitUntil(next);

15 END WaitTime;

25

[JAVA] Time Primitives

There is no WaitUntil, only WaitTime (sleep).

Methods:

• sleep(long milliseconds);

puts the currently executing thread to sleep for (at least) the

specified amount of time. Static method of the Thread class;

• currentTimeMillis();

returns the current time in milliseconds. Static method of the

System class.

26

The Idle process

What to do when all the processes are blocked?

• The CPU contains no other processes. The Idle process (lowest

priority) is executed.
1 (* Process *) PROCEDURE Idle;

2 BEGIN

3 SetPriority(MaxPriority - 1);

4 LOOP END;

5 END Idle;

• The CPU contains other non-real-time processes. Wait until the

wakeup time of the first process in the TimeQueue.

27

A complete real-time kernel

Real-Time kernel parts:

• how a process/thread/task is represented;

• what happens during a context switch;

• communication and synchronization mechanisms;

• interrupt handling;

• sleep;

• the idle process.

28

A complete real-time kernel: Task Queues

• ReadyQueue:

– one in the single-processor case or when using global scheduling for

multicores;

– multiple in case of partitioned scheduling for multicores;

– sorted in priority order.

• TimeQueue:

– sorted in earliest wakup time order.

• WaitQueues for semaphores, monitors, locks:

– sorted in priority order.

• WaitQueues for threads waiting for event/condition variable:

– normally sorted in priority order.

29

Reasons for a context switch – 1

The running thread executes an operation that leads to a context switch.

• Voluntarily releases the CPU:

– sleeps, the thread terminates, yields.

• Performs an operation that may cause it to block:

– waits on semaphore, tries to take/lock a monitor.

• Performs an operation that unblocks another higher priority thread:

– signals a semaphore, returns a lock.

30

Reasons for a context switch – 2

Due to an interrupt.

• Clock interrupt:

– a sleeping thread of higher priority than the executing one is woken

up;

– the running thread has executed longer than its time slice and there

is another thread with the same priority that is ready to execute.

• Other types of interrupts, like bus, keyboard, mouse:

– context switch to a device thread that handles the interrupt, which

eventually may cause a context switch to a thread waiting for events

like input/output ones.

31

Periodic Tasks

Implementing Periodic Tasks

Periodic tasks are very common in real-time systems.

Implementation options without a real-time kernel:

• Implement each periodic activity in an interrupt handler associated
with a period timer:

– only limited number of timers;

– di�cult and error-prone.

• Use a static cyclic executive:

– scheduler driven by period timer;

– inflexible.

33

Implementing Periodic Tasks

Implementation options with a real-time kernel:

• Real-Time kernel with wait time primitives:

– self-scheduling tasks (infinite loop with wait statements).

• Real-Time kernel with explicit support for periodic tasks:

– allows the programmer to register a function in the kernel to be

executed every T seconds;

– not common.

34

Periodic Tasks

Latency

Service time

Period

Actual start
 time

Actual start
 time

Ideal start
 time

Ideal start
 time

Ideal start
 time

• Latency: Release jitter due to limited time precision (for example

tick scheduling) and preemption from higher-priority tasks.

• Service time: Actual execution time and preemption from

higher-priority tasks.

35

Implementing Self-Scheduling Periodic Tasks

Attempt 1

1 LOOP

2 PeriodicActivity;

3 WaitTime(h);

4 END;

Does not work. The period is greater than h, and time-varying. The

execution time of PeriodicActivity is not accounted for.

36

Implementing Self-Scheduling Periodic Tasks

Attempt 2

1 LOOP

2 CurrentTime(Start);

3 PeriodicActivity;

4 CurrentTime(Finish);

5 Duration := Finish - Start;

6 WaitTime(h - Duration);

7 END;

Does not work. An interrupt causing suspension may occur between the

assignment and WaitTime. Need a WaitUntil primitive.

37

Implementing Self-Scheduling Periodic Tasks

Attempt 3

1 LOOP

2 CurrentTime(t);

3 PeriodicActivity;

4 IncTime(t, h);

5 WaitUntil(t);

6 END;

Does not work. Preemption by a higher-priority task may delay

CurrentTime from being executed.

38

Implementing Self-Scheduling Periodic Tasks

Attempt 4

1 CurrentTime(t);

2 LOOP

3 PeriodicActivity;

4 IncTime(t, h);

5 WaitUntil(t);

6 END;

Correct. Will however try to catch up if the actual execution time of

PeriodicActivity occasionally becomes larger than the period.

39

Implementing Self-Scheduling Periodic Tasks

Attempt 5: reset the base time in case of overruns. Accept a too long

sample and try to be on time from that sample on.

1 PROCEDURE NewWaitUntil(VAR t : TIME) // VAR = call-by-reference

2 VAR diff : INTEGER;

3

4 BEGIN

5 disableInterrupts;

6 diff := CompareTime(t, Now);

7 IF diff > 0 THEN // not overrun

8 Running^.head.nextTime := t;

9 MoveTime(Running, TimeQueue);

10 Schedule;

11 ELSE

12 CurrentTime(t);

13 END;

14 enableInterrupts;

15 END NewWaitUntil;

16 END;

40

Implementing Self-Scheduling Periodic Tasks

Attempt 5: the code becomes:

1 CurrentTime(t);

2 LOOP

3 PeriodicActivity;

4 IncTime(t, h);

5 NewWaitUntil(t);

6 END;

41

[JAVA] Implementing Self-Scheduling Periodic Tasks

1 public void run() {

2 long h = 10; // period (ms)

3 long duration;

4 long t = System.currentTimeMillis();

5

6 while (true) {

7 periodicActivity();

8 t = t + h; // when it should be repeated

9 duration = t - System.currentTimeMillis();

10 if (duration > 0) {

11 try {

12 sleep(duration);

13 } catch (InterruptedException e) { e.printStackTrace(); }

14 }

15 }

16 }

42

Foreground-Background Scheduler

Foreground tasks (like controllers) execute in interrupt handlers.

The background task runs as the main program loop.

A common way to achieve simple concurrency on low-end

implementation platforms that do not support any real-time kernels.

Will be used in the ATMEL AVR projects in the course as well as in Lab3.

43

Periodic Execution in The ATMEL AVR mega16

Main Program:

1 #include <avr/io.h>

2 #include <avr/signal.h>

3 #include <avr/interrupt.h>

4

5 int main() {

6 TCNT2 = 0x00; /* Timer 2: Reset counter (periodic timer) */

7 TCCR2 = 0x0f; /* Set clock prescaler to 1024 */

8 OCR2 = 144; /* Set the compare value, corr. to ~100 Hz

9 when clock runs @14.7 MHz */

10 /* 14.7 MHz/1024/144 is approx 100 Hz */

11

12 outp(BV(OCIE2),TIMSK); /* Start periodic timer */

13 sei(); /* Enable interrupts */

14 while (1) {

15 /* Do some background work */

16 }

17 }

44

Periodic Execution in The ATMEL AVR mega16

Timer Interrupt Handler:

1 /**

2 * Interrupt handler for the periodic timer.

3 * Interrupts are generated every 10 ms. The

4 * control algorithm is executed every 50 ms.

5 */

6 SIGNAL(SIG_OUTPUT_COMPARE2) {

7 static int8_t ctr = 0; /* static to retain value

8 between invocations! */

9 if (++ctr == 5) {

10 ctr = 0;

11 /* Run the controller */

12 }

13 }

45

