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• Reduction of measurable disturbances by feedforward

• Using feedforward to improve setpoint response

• The servo problem
• Reference generation – input–output approach
• Reference generation – state-space approach

• Nonlinear reference generation
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Reduction of measurable disturbances by feedforward

Typical scenario:

Hfb

−Hff

Hp1 Hp2

−1

ΣΣΣ
uc u

d

y

Pulse transfer function from measured disturbance d to output y :

Y (z) =
Hp2(z) (1− Hp1(z)Hff (z))
1+ Hp2(z)Hp1(z)Hc(z)

D(z)

To completely eliminate the disturbance, select

Hff (z) = H−1p1 (z) 3

System Inverses

Assume

H(z) =
B(z)
A(z)

� H−1(z) =
A(z)
B(z)

Potential problems:

• Inverse not causal if pole excess d = degA− degB ≥ 1
• Inverse not stable if B(z) has zeros outside unit circle

One possible solution:

• Factor B(z) as B+(z)B−(z)
• B+(z) has all its zeros inside unit circle
• B−(z) has all its zeros outside unit circle

• Use the approximate inverse

H†(z) =
A(z)

zd B+(z)B∗−(z)
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Approximate Inverse – Example

Let

G(s) =
6(1− s)

(s + 2)(s + 3)

ZOH sampling with h = 0.1 gives

H(z) =
−0.4420(z − 1.106)

(z − 0.8187)(z − 0.7408)
=
B(z)
A(z)

H−1(z) noncausal and unstable. Approximate inverse:

B+(z) = 1, B−(z) = −0.4420(z − 1.106), d = 1

H†(z) =
(z − 0.8187)(z − 0.7408)
−0.4420z(1− 1.106z)
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Using feedforward to improve setpoint response

The servo problem: Make the output respond to setpoint changes in
the desired way

Typical design criteria:

• Rise time, Tr

• Overshoot, M

• Settling time, Ts

• Steady-state error, e0

• . . .
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Simplistic Setpoint Handling – Error Feedback

uc
Σ Hc(z) Hp(z)

−1

ye

Potential problems:

• Step changes in the setpoint can introduce very large control
signals

• The same controller Hc(z) must be tuned to handle both
disturbances and setpoint changes

• No separation between the regulator problem and the servo
problem
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Common Quick Fixes

• Filter the setpoint signal

Hf (z)
uc ũc

• Rate-limit the setpoint signal

uc ũc

• Introduce setpoint weighting in the controller

• E.g. PID controller with setpoint weightings β and γ
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A More General Solution

Use a two-degree-of-freedom (2-DOF) controller, e.g.:

uc

Hp

−1

ΣHfb

Hff

y

Design procedure:

1. Design feedback controller Hfb to get good regulation properties
(attenuation of load disturbances and measurement noise)

2. Design feedforward compensator Hff to obtain the desired servo
performance

Separation of concerns
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2-DOF Control Structures

A 2-DOF controller can be represented in many different ways, e.g.:

For linear systems, all these structures are equivalent
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Example: PID with Setpoint Weighting

u = K
(

βysp − y +
1
TI

∫
(ysp − y)dτ + TD

d
dt

(γ ysp − y)
)

= K
(
e +

1
TI

∫
e dτ + TD

de
dt

)

+ K (β − 1)︸ ︷︷ ︸
K1

ysp + TDK (γ − 1)︸ ︷︷ ︸
K2

dysp
dt

GPPID+ +
yysp

K1      + K2 d      /dtysp ysp

−

Interpretation: Error feedback + feedforward from ysp
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Reference Generation – Input–Output Approach

2-DOF control structure with reference model and feedforward:

uc
HpHc

Hff

Hm

y

−1

ym

uff

Σ Σ

• Hm – model that describes the desired setpoint response

• Hff – feedforward generator that makes y follow ym
• Goal: perfect following if there are no disturbances or model errors
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Reference Generation – Input–Output Approach

The pulse transfer function from uc to y is

H =
Hp(Hff + HcHm)

1+ HpHc

Choose

Hff =
Hm

Hp

Then

H =
Hp(

Hm
Hp

+ HcHm)

1+ HpHc
= Hm

Perfect model following!
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Restrictions on the Model

In order for Hff =
Hm

Hp
to be implementable (causal and stable),

• Hm must have at least the same pole excess as Hp

• any zeros of Hp outside unit circle must also be included in Hm

In practice, also poorly damped zeros of Hp (e.g., outside the
heart-shaped region below) should be included in Hm
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Example: PID Control of the Double Tank

Process:

Gp(s) =
3

(1+ 60s)2

ZOH-sampled process (h = 3):

Hp(z) =
0.003627(z + 0.9672)

(z − 0.9512)2

PID controller tuned for good regulation performance:

Gc(s) = K
(
1+

1
sTi

+
sTd

1+ sTd/N

)

with K = 7, Ti = 45, Td = 15, N = 10, discretized using FOH
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Example: PID Control of the Double Tank

Simulation with simple error feedback:
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• Load disturbance at time 100 regulated as desired
• Too large control signal at time 0 and overshoot in the step
response
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Example: PID Control of the Double Tank

Reference model (critically damped – should not generate any
overshoot):

Gm(s) =
1

(1+ 10s)2

Sampled reference model:

Hm(z) =
0.036936(z + 0.8187)

(z − 0.7408)2

Feedforward filter:

Hff (z) =
Hm(z)
Hp(z)

=
10.1828(z + 0.8187)(z − 0.9512)2

(z − 0.7408)2(z + 0.9672)
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Example: PID Control of the Double Tank

Simulation with reference model and feedforward:
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• Perfect step response according to the model
• Unpleasant ringing in the control signal

• due to cancellation of poorly damped process zero
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Example: PID Control of the Double Tank

Modified reference model that includes the process zero:

Hm(z) =
0.034147(z + 0.9672)

(z − 0.7408)2

New feedforward filer:

Hff (z) =
Hm(z)
Hp(z)

=
9.414(z − 0.9512)2

(z − 0.7408)2

19

Example: PID Control of the Double Tank

Simulation with modified reference model:
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• Very similar step response
• Ringing in control signal eliminated
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Remark

In the implementation, both uff and ym can be generated by a single
dynamical system:

uc

uff

ym

Model and
feedforward
generator

Matlab:

>> Hp = ... % define process

>> Hm = ... % define reference model

>> refgen = [Hm/Hp; Hm] % concatenate systems

>> minreal(ss(refgen)) % make minimal state-space realization
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Simplistic Setpoint Handling in State Space

Replace u(k) = −Lx(k) with

u(k) = Lcuc(k)− Lx(k)

The pulse transfer function from uc(k) to y(k) is

Hyuc (z) = C(zI − Φ+ ΓL)−1ΓLc = Lc
B(z)
Am(z)

In order to have unit static gain (Hyuc (1) = 1), Lc should be chosen as

Lc =
1

C(I − Φ+ ΓL)−1Γ
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Reference Generation – State Space Approach

∑ ∑
x m

uff

ˆ x 
Observer

L Process

−

ufb y

  uc   Model and
Feedforward 
  Generator

The model should generate a reference trajectory xm for the process
state x (one reference signal per state variable)

The feedforward signal uff should make x follow xm

– Goal: perfect following if there are no disturbances or model
errors
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Reference Generation – State Space Approach

Linear reference model:

xm(k + 1) = Φmxm(k) + Γmuc(k)

Control law:

u(k) = L
(
xm(k)− x̂(k)

)
+ uff (k)

• How to generate model states xm that are compatible with the
real states x?

• How to generate the feedforward control uff?
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Design of the Reference Model

Start by choosing the reference model identical to the process model,
i.e.,

xm(k + 1) = Φxm(k) + Γuff (k)

Then modify the dynamics of the reference model as desired using
state feedback (“within the model”)

uff (k) = Lcuc(k)− Lmxm(k)

Gives the reference model dynamics

xm(k + 1) = (Φ− ΓLm︸ ︷︷ ︸
Φm

)xm(k) + ΓLc︸︷︷︸
Γm

uc(k)
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Design of the Reference Model

uc

uff

xm

Lc Model

−Lm

Σ

Model and Feedforward Generator
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Design of the Reference Model

Design choices:

• Lm is chosen to give the model the desired eigenvalues (poles)

• Lc is chosen to give the desired static gain (usually 1)

Remark: The reference model will have the same zeros as the
process, so there is no risk of cancelling poorly damped or unstable
zeros

Additional zeros and poles can be added by extending the model
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Complete State-Space Controller

The complete controller, including state feedback, observer, and
reference generator is given by

x̂(k + 1) = Φx̂(k) + Γu(k) + K (y(k)− Cx̂(k)) (Observer)

xm(k + 1) = Φxm(k) + Γuff (k) (Reference model)

u(k) = L(xm(k)− x̂(k)) + uff (k) (Control signal)

uff (k) = −Lmxm(k) + Lcuc(k) (Feedforward)
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Design Example: Depth Control of Torpedo

θ
δ

y

State vector:

x =


q

θ

y

 =


pitch angular velocity

pitch angle

depth


Input signal:

u = δ = rudder angle
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Torpedo: Continuous-Time Model

Simple model:
dq
dt

= aq + bδ

dθ

dt
= q

dy
dt

= −Vθ (+ cδ )

where a = −2, b = −1.3, and V = 5 (speed of torpedo)

ẋ =


a 0 0

1 0 0

0 −V 0

 x +


b

0

0

 u

y =
 0 0 1

 x
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Torpedo: Sampled Model

Sample with h = 0.2

x(k + 1) =


0.67 0 0

0.165 1 0

−0.088 −1 1

 x(k) +


−0.214

−0.023

0.008

 u(k)

Matlab:

>> A = [a 0 0; 1 0 0; 0 -V 0];

>> B = [b; 0; 0];

>> C = [0 0 1];

>> Gp = ss(A,B,C,0);

>> h = 0.2;

>> Hp = c2d(Gp,h);

>> [Phi,Gamma] = ssdata(Hp);
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Torpedo: State Feedback Design

• u(k) = −Lx(k)

• rejection of (impulse) load disturbances

Desired continuous-time dynamic behaviour:

• two complex-conjugated poles with relative damping 0.5 and
natural frequency ω c

• one pole in −ω c

• a single parameter decides the dynamics

Desired characteristic polynomial

(s2 + 2 ⋅ 0.5 ⋅ ω cs +ω 2
c)(s +ω c) = s3 + 2ω cs2 + 2ω 2

cs +ω 3
c

Each pole translated into discrete time as zi = esih
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Torpedo: State Feedback Design in Matlab

Matlab:

>> wc = 1; % speed of state feedback

>> pc = wc*roots([1 2 2 1]); % control poles in cont time

>> pcd = exp(pc*h); % control poles in disc time

>> L = place(Phi, Gam, pcd)

L =

-0.145 -1.605 0.153
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Torpedo: Observer Design

• x̂(k + 1) = Φx̂(k) + Γu(k) + K
(
y(k)− Cx̂(k)

)
• state estimation + measurent noise rejection

Observer Dynamics:

• the same pole layout as in the state feedback design

• parametrized by ω o instead of ω c

• typically faster dynamics than the state feedback, e.g., ω o = 2ω c

Desired continuous-time characteristic polynomial:

(s2 +ω os +ω 2
o)(s +ω o) = s3 + 2ω os2 + 2ω 2

os +ω 3
o
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Torpedo: Observer Design in Matlab

>> wo = 2; % speed of observer

>> po = wo*roots([1 2 2 1]); % observer poles in cont time

>> pod = exp(po*h); % observer poles in disc time

>> K = place(Phi’,C’,pod)’

K =

0

-0.130

0.460
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Torpedo: Simplistic Setpoint Handling

Simulation assuming simplistic approach, u(k) = −Lx̂(k) + Lcuc(k),
Lc =

(
C(I − Φ+ ΓL)−1Γ

)−1
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• Step response slower than desired; overshoot in response
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Torpedo: Reference Model and Feedforward Design

Reference model:

xm(k + 1) = Φxm(k) + Γuff (k)

Feedforward:

uff = −Lmxm + Lcmuc

Desired characteristic polynomial:

(s +ωm)
3 = s3 + 3ωms2 + 3ω 2

ms +ω 3
m

(critically damped – important!)

• Parametrized using ωm

• Chosen as ωm = 2ω c
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Torpedo: Reference Model and Feedforward in Matlab

>> wm = 2; % speed of model

>> pm = wm*roots([1 3 3 1]); % model poles in cont time

>> pmd = exp(pm*h); % model poles in disc time

>> Lm = place(Phi,Gam,pmd)

Lm =

-2.327 -6.744 0.886

>> Hm = ss(Phi-Gam*Lm,Gam,C,0,h);

>> Lcm = 1/dcgain(Hm)

Lcm =

0.836
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Torpedo: Final Controller
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• Faster step response without overshoot
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Torpedo: Final Controller

Model states and feedforward signal:
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• The model states and the feedforward signal are not affected by
the load disturbance

• Open loop
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Torpedo: Final Controller without Feedforward

Simulation without the feedforward signal, u(k) = L(xm(k)− x̂(k)):
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• Does not work very well – the feedforward term is needed to get
the desired setpoint response
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Torpedo: Final Controller without Feedback

Simulation without the feedback signal, u(k) = uff (k):
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• Does not work – the feedback term is needed to stabilize the
process and handle the load disturbance
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Nonlinear Reference Generation

Recall the state-space approach to reference generation:

∑ ∑
x m

uff

ˆ x 
Observer

L Process

−

ufb y

  uc   Model and
Feedforward 
  Generator

uff and xm do not have to come from linear filters but could be the
result of solving an optimization problem, e.g.:

• Move a satellite to a given altitude with minimum fuel
• Position a mechanical servo in as short time as possible under a
torque constraint

• Move the ball on the beam as fast as possible without losing it
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General Solution for Linear Processes

Assume linear process
dx
dt

= Ax + Bu

• Derive the feedforward (open-loop) control signal uff that solves
the stated optimization problem

• Course in Nonlinear Control (FRTN05, Lp 2)

• Generate the model state trajectories by solving

dxm
dt

= Axm + Buff

Similar approach can be used for sampled systems
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Example: Time-Optimal Control of Ball on Beam

State vector:

x =


z

v

φ

 =


ball position

ball velocity

beam angle


Continuous-time state-space model:

dz
dt = v
dv
dt = −kvφ (kv � 10)
dφ
dt = kφu (kφ � 4.5)
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Example: Time-Optimal Control of Ball on Beam

Optimization problem: Assume steady state. Move the ball from
start position z(0) = z0 to final position z(tf ) = zf in minimum time
while respecting the control signal constraints

−umax ≤ u(t) ≤ umax

Optimal control theory gives the optimal open-loop control law

uff (t) =



−u0, 0 ≤ t < T

−u0, T ≤ t < 3T

−u0, 3T ≤ t < 4T

where

u0 = sgn(zf−z0)umax

T = 3

√
�zf−z0�
2kφkvumax

tf = 4T 46

Example: Time-Optimal Control of Ball on Beam

Assume umax = 1, z0 = 0, and zf = 5 � tf = 1.538

Optimal control signal:
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(“bang-bang” control)
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Example: Time-Optimal Control of Ball on Beam

Solving
dφm
dt = kφuff

gives the optimal beam angle trajectory

φm(t) =



−kφu0 t , 0 ≤ t < T

−kφu0 (t−2T ), T ≤ t < 3T

−kφu0 (t−4T ), 3T ≤ t ≤ 4T
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Example: Time-Optimal Control of Ball on Beam

Solving
dvm
dt = −kvφm

gives the optimal ball velocity trajectory

vm(t) =



−kφkvu0 t2/2, 0 ≤ t < T

−kφkvu0 (t2/2−2Tt+T 2), T ≤ t < 3T

−kφkvu0 (t2/2−4Tt+8T 2), 3T ≤ t ≤ 4T
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Example: Time-Optimal Control of Ball on Beam

Finally, solving
dzm
dt = vm

gives the optimal ball position trajectory

zm(t) =



z0 + kφkvu0 t3/6, 0 ≤ t < T

z0 − kφkvu0 (t3/6−Tt2+T 2t−T 3/3), T ≤ t < 3T

z0 + kφkvu0 (t3/6−2Tt2+8T 2t−26T 3/3), 3T ≤ t ≤ 4T
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Using the Time-Optimal Feedforward Generator in a
Cascade Control Structure

uff

uc φm

φ
PID P Gφ Gy

Model and
feedforward
generator z

−1

−1

zm
ΣΣΣ

• The PID controller should have derivative weighting γ = 1
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Lectures 9 and 10: Summary

• Regulator problem – reduce impact of load disturbances and
measurement noise

• Feedforward from measurable disturbances
• Input–output approach: design of feedback controller Hfb(z), e.g.
PID controller

• State space approach: design of state feedback and observer,
including disturbance estimator

• Servo problem – make the output follow the setpoint in the
desired way

• Input–output approach: design of reference model Hm(z) and
feedforward filter Hff (z)

• State space approach: design of combined reference and
feedforward generator

• Linear or nonlinear reference generation
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