

[IFAC PB Ch 6, Ch 8, RTCS Ch 10]

- Discrete-time approximation of continuous-time controllers
 - State-space domain
 Frequency domain
 - The PID Controller

Want to find discrete-time Algorithm such that

A-D + Algorithm + D-A \approx Continuous Controller

Differentiation and Tustin Approximations

Forward difference (Euler's forward method):

$$\frac{dx(t)}{dt} \approx \frac{x(t+h) - x(t)}{h} = \frac{q-1}{h} x(t)$$

Backward difference (Euler backward):

$$\frac{dx(t)}{dt} \approx \frac{x(t) - x(t-h)}{h} = \frac{q-1}{qh} x(t)$$

Tustin's approximation (trapezoidal method, bilinear transforma-tion):

$$rac{\dot{k}(t+h)+\dot{x}(t)}{2}pproxrac{x(t+h)-x(t)}{h}$$

Lecture 8 **Design Approaches** Continuous-Time Process Model

Methods:

- Differentiation and Tustin approximations
 - State-space domain - Frequency domain

 - Ramp invariance (FOH) Step invariance (ZOH) .
 - Pole-zero matching

(Tustin and the three last methods are available in Matlab's c2d command)

State-Space Domain

Assume that the controller is given in state-space form

$$\frac{dx}{dt} = Ax + Bu$$

y = Cx + Du

where x is the controller state, y is the controller output, and u is the controller input.

Forward or backward approximation of the derivative

d)
ŏ
Ξ.
5
۳
Ð
۳È
- i -
σ
-
2
3
Š
2
ō
ιĭ.
_

$$\frac{dx(t)}{dt} \approx \frac{x(k+1) - x(k)}{h}$$

leads to

$$\frac{x(k+1) - x(k)}{h} = Ax(k) + Bu(k)$$
$$y(k) = Cx(k) + Du(k)$$

which gives

 $\begin{aligned} x(k+1) &= (I+hA)x(k) + hBu(k) \\ y(k) &= Cx(k) + Du(k) \end{aligned}$

Frequency Domain

Assume that the controller is given as a transfer function G(s)The discrete-time approximation H(z) is given by

H(z)=G(s')

where

Forward difference	Backward difference	Tustin's approximation
$s' = \frac{z-1}{h}$	$s' = rac{z-1}{zh}$	$s' = \frac{2}{h} \frac{z-1}{z+1}$

Alternative: Write as differential equation first:

Backward difference

 $\frac{dx(t)}{dt} \approx \frac{x(k) - x(k-1)}{h}$

first gives

$$\begin{split} x(k) &= (I - hA)^{-1} x(k - h) + (I - hA)^{-1} hBu(k) \\ y(k) &= Cx(k) + Du(k) \end{split}$$

$$\begin{split} x'(k+1) &= (I-hA)^{-1}x'(k) + (I-hA)^{-1}hBu(k) \\ y(k) &= C(I-hA)^{-1}x'(k) + (C(I-hA)^{-1}hB + D)u(k) \end{split}$$
which after a variable shift x'(k) = x(k - h) gives

Example: Discretization

œ

Assume that the following simple controller (filter) has been designed in continuous-time:

$$U(s) = \frac{1}{s+2}E(s)$$

Discretize this controller using Forward Euler approximation, i.e. replace s with $\frac{z-1}{h}$:

$$\begin{split} U(z) &= \frac{1}{\frac{z_{-1}}{h} + 2} E(z) \\ U(z) &= \frac{h}{z - 1 + 2h} E(z) \\ (z - 1 + 2h) U(z) &= h E(z) \\ (z - 1 + 2h) u(z) &= h e(k) \\ u(k + 1) - (1 - 2h) u(k - 1) + h e(k - 1) \end{split}$$

Properties of the Approximation $H(z) \approx G(s)$

01

6

Where do stable poles of G(s) get mapped?

12

Ξ

Time

Frequency Distortion

Simple approximations such as Tustin introduce frequency distortion.

Important for controllers or filters designed to have certain characteristics at a particular frequency, e.g., a band-pass filter or a notch (band-stop) filter. Tustin:

$$H(e^{i\omega h})pprox G\left(rac{2}{h}rac{e^{i\omega h}-1}{e^{i\omega h}+1}
ight)$$

The argument of G can be written as

$$\frac{2}{h}\frac{e^{iah}-1}{e^{iah}+1} = \frac{2}{h}\frac{e^{iah/2}-e^{-iah/2}}{e^{iah/2}+e^{-iah/2}} = \frac{2i}{h}\tan\left(\frac{ah}{2}\right)$$

13

Frequency Distortion, Cont'd

If the continuous-time system affects signals at frequency $\omega',$ the sampled system will instead affect signals at ω where

 $\omega' = rac{2}{h} an \left(rac{\omega h}{2}
ight)$

$$\omega = rac{2}{h} ext{tan}^{-1} \left(rac{\omega' h}{2}
ight) pprox \omega' \left(1 - rac{(\omega' h)^2}{12}
ight)$$

No distortion at $\omega = 0$

Distortion is small if ωh is small

Extra Slide: Basic Math

$$e^{a}e^{b} = e^{a+b}$$

$$e^{0} = 1$$

$$\tan a = \frac{\sin a}{\cos a}$$

$$\cos a = \frac{1}{2}(e^{ia} + e^{-ia})$$

$$\sin a = \frac{1}{2i}(e^{ia} - e^{-ia})$$

$$\tan^{-1} x = x - \frac{x^{3}}{3} + \frac{x^{5}}{5} - \frac{x^{7}}{7} + \cdots$$

Prewarping to Reduce Frequency Distortion

14

Choose one point ω_1 . Approximate using

$$s'=rac{arphi_1}{ an(arphi_1h/2)}\cdotrac{z-1}{z+1}$$

This implies that $H\left(e^{i\omega_{1}h}\right)=G(i\omega_{1})$. Plain Tustin is obtained for $\omega_{1}=0$ since $\tan\left(\frac{\omega_{1}h}{2}\right)\approx\frac{\omega_{1}h}{2}$ for small ω .

16

15

Comparison of Approximations (2)

18

11

Freque

Sample and Hold-Based Approximations

Sample the controller in the same way as the physical plant model is sampled

- First-order hold or Ramp invariance method Zero-order hold or Step invariance method
- For a controller, the assumption that the input is piece-wise constant (ZOH) or piece-wise linear (FOH) does not hold! However, the ramp invariance method normally gives good results with little frequency distortion

19

Matlab

The critical frequency Wc is specified last as in C2D(SysC,Ts,'prewarp',Wc) Matched pole-zero method (for SISO systems only). converts the continuous Tustin approximation with frequency system SYSC to a discrete-time system SYSD with sample time TS. The string METHOD selects the discretization method among the following: 'zoh' Zero-order hold on the inputs. (triangle appx.) Bilinear (Tustin) approximation Linear interpolation of inputs SYSD = C2D(SYSC, TS, METHOD) prewarping. 'prewarp' 'tustin' 'foh'

Design Approaches: Which Way?

Discretization of Continuous Design:

- Empirical control design
 - not model-based
 - e.g., PID control
- Nonlinear continuous-time model

In most other cases it is mainly a matter of taste.

23

54

Comparison of Approximations (3)

Design Approaches: Which Way?

20

Sampled-Control Design:

- When the plant model is already on discrete-time form - obtained from system identification
- When the control design assumes a discrete-time model - e.g., model-predictive control
- When fast sampling not possible

21

'matched'

22

An Example: PID Control

- The oldest controller type
 - The most widely used
 - Pulp & Paper 86%
- Steel 93%Oil refineries 93%
- Much to learn!

The Textbook Algorithm

$$u(t) = K\left(e(t) + \frac{1}{T_i}\int_0^t e(\tau)d\tau + T_d\frac{de(t)}{dt}\right)$$

$$U(s) = KE(s) + \frac{K}{sT_i}E(s) + KT_dsE(s)$$

$$= P + I + D$$

Properties of P-Control

25

Stationary error
 Increased K means faster speed, worse stability, increased noise sensitivity

27

Integral Term

Stationary error present $\to \int e \, dt$ increases $\to u$ increases $\to y$ increases \to the error is not stationary

Proportional Term

 26

Error with P-control

	$u = Ke + u_0$	
Control signal:		Error:

$$e = \frac{u - u_0}{K}$$

Error removed if:
1.
$$K = \infty$$

2. $u_0 = u$

Solution: Automatic way to obtain u_0

28

Automatic Reset

30

 $e^{(t)}$

Error

trol variable

Ξ

Set point and r

15.

0.5

 T_d = Prediction horizon

PD:

ä

Series form

Other forms:

36

35

6
~
5
<u>.</u>
+-
<u> </u>
<u> </u>
<u>.</u>
5
ŏ
<u> </u>
2
_
O
Ö
÷
C
U
-
ш.

Modifications are needed to make the PID controller practically useful

- Limitations of derivative gain
- Derivative weighting
 - Setpoint weighting
- Handle control signal limitations

Derivative Weighting

33

The setpoint is often constant for long periods of time Setpoint often changed in steps \rightarrow D-part becomes very large. Derivative part applied on part of the setpoint or only on the measurement signal.

$$D(s) = rac{sT_d}{1+sT_d/N}(\gamma Y_{sp}(s)-Y(s))$$

Often, $\gamma=0$ in process control (step reference changes), $\gamma=1$ in servo control (smooth reference trajectories)

39

Setpoint Weighting

Limitation of Derivative Gain

We do not want to apply derivation to high frequency measurement noise, therefore the following modification is used:

$$sT_d pprox rac{sT_d}{1+sT_d/}$$

|

 ${\cal N}=$ maximum derivative gain, often 10-20

Setpoint Weighting

38

An advantage to also use weighting on the setpoint.

$$u = K(y_{sp} -$$

Ś

replaced by

$$u = K(\beta y_{sp} - y)$$

$$0\leq eta\leq 1$$

A way of introducing feedforward from the reference signal (position a closed loop zero) Improved set-point responses. 40

Control Signal Limitations

All actuators saturate. Problems for controllers with integration. When the control signal saturates the integral part will continue to grow – integrator (reset) windup.

When the control signal saturates the integral part will integrate up to a very large value. This may cause large overshoots. $_{2,00000\,MeV}$

42

41

Anti-Reset Windup

Several solutions exist:

- controllers on velocity form $(\Delta u$ is set to 0 if u saturates)
- limit the setpoint variations (saturation never reached)
- conditional integration (integration is switched off when the control is far from the steady-state)
 - tracking (back-calculation)

New Slide: Discretization

45

Two approaches:

- Discretize the entire PID controller at the same time using some approximation method. Assuming that $\beta=\gamma=0$

$$\begin{split} \text{PID}(s) &= K \left(1 + \frac{1}{T_{Is}} + \frac{T_{D}s}{1 + sT_{D}/N} \right) \\ &= \frac{K(T_{I}T_{D}(1 + 1/N)s^{2} + (T_{I} + T_{D}/N)s + 1)}{T_{Is}(1 + sT_{D}/N)} \end{split}$$

- Only two states
- Lose the interpretation of the individual parts
 - Discrete the P, I and D parts separately
 - Requires one more state
 Maintains the interpretation
 The approach used here

4

48

Tracking

- when the control signal saturates, the integral is recom-puted so that its new value gives a control signal at the saturation limit
- to avoid resetting the integral due to, e.g., measurement noise, the recomputation is done dynamically, i.e., through a LP-filter with a time constant $T_i(T_r)$.

4

43

Discretization

P-part:

 $P(k) = K(\beta y_{sp}(k) - y(k))$

I-part:

Forward difference

The I-part can be precalculated in UpdateStates $\frac{I(t_{k+1})-I(t_k)}{h}=\frac{K}{T_i}e(t_k)$ I(k+1) := I(k) + (K*h/Ti)*e(k)

The I-part cannot be precalculated, i(k) = f(e(k))Backward difference

49

Discretization

Tracking:

- v := P + I + D; u := sat(v,umax,umin); I := I + (K*h/Ti)*e + (h/Tr)*(u v);

Bumpless Mode Changes

Bumpless Mode Changes

Discretization

D-part (assume $\gamma = 0$):

$$D = K \frac{sT_d}{1 + sT_d/N} (-Y(s))$$
$$\frac{T_d}{N} \frac{dD}{dt} + D = -KT_d \frac{dy}{dt}$$

• Forward difference (unstable for small T_d /large h)

Backward difference

$$\frac{T_d}{N} \frac{D(t_k) - D(t_{k-1})}{h} + D(t_k) = -KT_d \frac{y(t_k) - y(t_{k-1})}{h}$$

$$D(t_k) = rac{I_d}{T_d + Nh} D(t_{k-1}) - rac{\Delta I_d I_V}{T_d + Nh} (y(t_k) - y(t_{k-1}))$$

20

Bumpless Transfer

Avoid bumps in control signal when

- changing operating mode (manual auto manual)
 - changing between different controllers changing parameters

Key lssue: Make sure that the controller states have the correct values, i.e., the same values before and after the change

52

21

54

 $\overline{53}$

```
Extract from Regul
                                                                             public Regul() {
    pid = new SimplePID(1,10,0,1,10,5,0.1);
}
                                                                                                                                                                                     while (true) {
    y = getY();
    yref = getYref();
    u = pid.calculateOutput(yref,y);
    u = limit(u);
    setU(u);
                                   public class Regul extends Thread {
    private SimplePID pid;
                                                                                                                                                                                                                                                                                    pid.updateState(u);
// Timing Code
                                                                                                                                              public void run() {
    // Other stuff
                                                                                                                                                                                                                                                                                                             <u>_</u>
```

Alternative PID: Low-pass filer

$$Y_f(s) = rac{1}{T_f^2 s^2 + 1.4 T_f s + 1} Y$$

(s)

- Relative damping: $\zeta = 1/\sqrt{2}$ Filter constant $T_f = T_I/N$ (Pl) or $T_f = T_D/N$ (PlD), where N ranges from 2 to 20.
 - Ш State-space representation: $x_1(t) = y_f(t)$ and $x_2(t) \, dy_f(t)/dt$ •

$$\begin{split} \frac{dx_1(t)}{dt} &= x_2(t) \\ \frac{dx}{dt} &= -\frac{1.4}{T_f} x_2(t) - \frac{1}{T_f^2} x_1(t) + \frac{1}{T_f^2} y(t) \end{split}$$

3

5

Alternative PID: Ideal PID

Since $dy_f(t)/dt = x_2(t)$ the discretization and the pseudo-code for the ideal PID becomes very simple, The total PID code (without anti-windup) including the filter is shown below:

```
x1 = p1*x1old + p2*x2old + p3*y;
x2 = p4*x2old + p5*(y - x1old);
v = K*(Beta*yref - x1) + I - K*Td*x2;
u = sat(y);
                                                                                                                                                                                                                den = Tf*Tf + 1.4*h*Tf + h*h;
p1 = 1 - h*h/den;
p2 = h*Tf*Tf/den;
p3 = h*h/den;
p4 = Tf*Tf/den; // equals p2/h
p5 = h/den; // equals p3/h
                                                                                                                        I = I + (K*h/Ti)*(yref - x1);
x1old = x1; x2old = x2;
                                                                                                                                                                                   with the precalculated parameters
                                                                                                      output u
```

65

Alternative PID Realization

The PID controller presented so far does not suppress high-frequency noise very well (constant gain for high frequencies) Alternative:

- use a second-order low-pass on the measurement signal

 - use the filtered measurement signal, y_f , as an input to a PID with an ideal derivative (without low-pass filter) implement the low-pass filter so that dy_f/dt is directly obtainable from the filter

62

61

Alternative PID: Low-pass filer

 $x_1[k] = (1 - \frac{h^2}{den})x_1[k - 1] + \frac{hT_1^2}{den}x_2[k - 1] + \frac{h^2}{den}y[k]$ Discretize using backward Euler gives

 $x_{2}[k] = \frac{1}{den} \left(T_{f}^{2} x_{2}[k-1] - hx_{1}[k-1] + hy[k]\right)$ $den = (T_f^2 + 1.4hT_f + h^2)$