
1

2

Lecture 4: Synchronization & Communication -

Part 2

[RTCS Ch. 4]

• Deadlock

• Priority Inversion & Inheritance

• Mailbox Communication

• Communication with Objects

3

Deadlock

Improper allocation of common resources may cause deadlock.

Example:

• A and B both need access to two common resources

protected by the semaphores R1 and R2 (initialized to 1).

Process A Process B

... ...

Wait(R1); Wait(R2);

Wait(R2); Wait(R1);

... ...

Signal(R2); Signal(R1);

Signal(R1); Signal(R2);

... ...

May cause deadlock.

Same situation can occur in Java with synchronized methods.
4

Deadlock handling

• Deadlock prevention (during design)

– e.g. hierachical resource allocation

• Deadlock avoidance (at run-time)

– e.g. priority ceiling protocol

• Deadlock detection and recovery (at run-time)

5

Necessary conditions

Must hold for a deadlock due to resource handling to occur.

1. Mutual exclusion: only a bounded number of processes

can use a resource at a time.

2. Hold and wait: processes must exist which are holding

resources while waiting for other resources.

3. No preemption: resources can only be released voluntarily

by a process

4. Circular wait: a circular chain of processes must exist such

that each process holds a resource that is requested by

the next process in the chain.

6

Deadlock prevention

Remove one of the four conditions:

• Mutual exclusion – usually unrealistic

• Hold and wait – require that the processes preallocate all

resources before execution or at points when they have no

other resources allocated

• No preemption – forced resource deallocation

• Circular wait condition – ensure that resources always are

allocated in a fixed order

7

Hierarchical resource allocation

Pyramidical resource allocation

A resource belongs to one of the classes Ri where i = 1 . . .n.

A process must reserve resources in this order.

If it has a resource in one class it may not reserve a resource

in a lower class.

Process A Process B

... ...

Wait(R1); Wait(R1);

Wait(R2); Wait(R2);

... ...

Signal(R2); Signal(R2);

Signal(R1); Signal(R1);

... ...
8

Priority Inversion

A situation where a high-priority process becomes blocked

by a lower priority process and there is no common resource

involved between the two processes.

Controller Plot-process

Plot-
monitor

Priority = 10 Priority = 30

OpCom

Priority = 20

1. Plot-process enters PlotMonitor.

2. An interrupts causes OpCom to execute.

3. An interrupt causes Controller to execute.

4. Controller tries to enter PlotMonitor
9

Controller is indirectly blocked by OpCom.

Solutions:

• Priority Inheritance

• Priority Ceiling Protocol

• Immediate Inheritance

10

Priority Inheritance

If, during execution of Enter, the monitor is occupied then

the priority of the process holding the monitor is raised to the

priority of the calling process.

The priority is reset in Leave.

(The monitor primitives in the STORK kernel behave in this

way)

11

Priority Inheritance

Controller

Opcom

Plot

Controller

Opcom

Plot

Controller tries
to enter plot-monitor

Plot:

Opcom:

Controller:

low priority

medium priority

high priority

executing

executing inside plot-monitor

suspended by other task

Without
priority
inheritance

With
priority
inheritance

12

Example: Mars Pathfinder 1997

After a while the spacecraft experienced total system resets,
resulting in losses of meteorological data. Reason:

• A mutex-protected shared memory area for passing information

• A high priority bus management task, frequently passing data in
and out

• An infrequent data gathering task at low priority, entering data
into the memory

• A third communication task at medium priority, not accessing
the shared memory

• Occasionally, the situation arised where the mutex was held by
the low priority task, the high priority task was blocked on the
mutex, and the medium priority task was executing, preventing
the low priority task from leaving the mutex

• The classical priority inversion situation
13

Solution:

• VxWorks from Wind River Systems

• binary mutex semaphores with an optional initialization

argument that decides if priority inheritance should be

used or not

• upload of code that modified the symbol tables of the

Pathfinder so that priority inheritance was used

14

The Priority Ceiling Protocol

L. Sha, R. Rajkumar, J. Lehoczky, Priority Inheritance Protocols: An Approach to

Real-Time Synchronization, IEEE Transactions on Computers, Vol. 39, No. 9, 1990

Restrictions on how we can lock (Wait, EnterMonitor) and

unlock (Signal, LeaveMonitor) resources:

• a task must release all resources between invocations

• the computation time that a task i needs while holding

semaphore s is bounded. csi,s = the time length of the

critical section for task i holding semaphore s

• a task may only lock semaphores from a fixed set of

semaphores known a priory. uses(i) = the set of

semaphores that may be used by task i

15

The protocol:

• the ceiling of a semaphore, ceil(s), is the priority of the

highest priority task that uses the semaphore

• notation: pri(i) is the priority of task i

• At run-time:

– if a task i wants to lock a semaphore s, it can only do

so if pri(i) is strictly higher than the ceilings of all

semaphores currently locked by other tasks

– if not, task i will be blocked (task i is said to be blocked

on the semaphore, S∗, with the highest priority ceiling

of all semaphores currently locked by other jobs and

task i is said to be blocked by the task that holds S∗)

– when task i is blocked on S∗, the task currently holding

S∗ inherits the priority of task i

16

Properties:

• deadlock free

• a given task i is delayed at most once by a lower priority

task

• the delay is a function of the time taken to execute the

critical section

17

Deadlock free

Example:

Task name T Priority

A 50 10

B 500 9

Task A Task B

lock(s1) lock(s2)

lock(s2) lock(s1)

... ...

unlock(s1) unlock(s1)

unlock(s2) unlock(s2)

ceil(s1) = 10, ceil(s2) = 10

18

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

• t0: B starts executing

19

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

• t1: B attempts to lock s2. It succeeds since no lock is held

by another task.

20

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

• t2: A preempts B

21

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

• t3: A tries to lock s1. A fails since A’s priority (10) is not

strictly higher than the ceiling of s2 (10) that is held by B

• A is blocked by B

• A is blocked on s2

• The priority of B is raised to 10.
22

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

• t4: B attempts to lock s1. B succeeds since there are no

locks held by any other tasks.

23

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

• t5: B unlocks s1

24

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

• t6: B unlocks s2

• The priority of B is lowered to its assigned priority (9)

• A preempts B, attempts to lock s1 and succeeds

25

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

• t7: A attempts to lock s2. Succeeds

26

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

• t8: A unlocks s2

27

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

• t9: A unlocks s1

28

Example:

Task name T Priority

A 50 10

B 500 9

C 3000 8

Task A Task B Task C

lock(s1) lock(s2) lock(s3)

..

unlock(s1) lock(s3) lock(s2)

..

unlock(s3) unlock(s2)

.. ..

unlock(s2) unlock(s3)

ceil(s1) = 10, ceil(s2) = ceil(s3) = 9

29

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

C

s1 locked s1 unlocked

s3 locked

blocked by C

(attemp to lock s2)

s2 locked
s3 locked

s3 unlockeds2 unlocked

s2 unlockeds3 unlockeds2 locked

Critical section
guarded by s1

Critical section
guarded by s2

Critical section
guarded by s3

• t0: C starts execution and then locks s3

30

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

C

s1 locked s1 unlocked

s3 locked

blocked by C

(attemp to lock s2)

s2 locked
s3 locked

s3 unlockeds2 unlocked

s2 unlockeds3 unlockeds2 locked

Critical section
guarded by s1

Critical section
guarded by s2

Critical section
guarded by s3

• t1: B preempts C

31

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

C

s1 locked s1 unlocked

s3 locked

blocked by C

(attemp to lock s2)

s2 locked
s3 locked

s3 unlockeds2 unlocked

s2 unlockeds3 unlockeds2 locked

Critical section
guarded by s1

Critical section
guarded by s2

Critical section
guarded by s3

• t2: B tries to lock s2. B fails (the priority of B is not strictly

higher than the ceiling of s3 that is held by C) and blocks

on s3 (B is blocked by C). C inherits the priority of B.

32

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

C

s1 locked s1 unlocked

s3 locked

blocked by C

(attemp to lock s2)

s2 locked
s3 locked

s3 unlockeds2 unlocked

s2 unlockeds3 unlockeds2 locked

Critical section
guarded by s1

Critical section
guarded by s2

Critical section
guarded by s3

• t3: A preempts C. Later is tries to lock s1 and succeeds

(the priority of A is higher than the ceiling of s3).

33

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

C

s1 locked s1 unlocked

s3 locked

blocked by C

(attemp to lock s2)

s2 locked
s3 locked

s3 unlockeds2 unlocked

s2 unlockeds3 unlockeds2 locked

Critical section
guarded by s1

Critical section
guarded by s2

Critical section
guarded by s3

• t4: A completes. C resumes and later tries to lock s2 and

succeeds (it is C itself that holds s3).

34

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

C

s1 locked s1 unlocked

s3 locked

blocked by C

(attemp to lock s2)

s2 locked
s3 locked

s3 unlockeds2 unlocked

s2 unlockeds3 unlockeds2 locked

Critical section
guarded by s1

Critical section
guarded by s2

Critical section
guarded by s3

• t5: C unlocks s2

35

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

C

s1 locked s1 unlocked

s3 locked

blocked by C

(attemp to lock s2)

s2 locked
s3 locked

s3 unlockeds2 unlocked

s2 unlockeds3 unlockeds2 locked

Critical section
guarded by s1

Critical section
guarded by s2

Critical section
guarded by s3

• t6: C unlocks s3, and gets back its basic priority. B pre-

empts C, tries to lock s2 and succeeds. Then B locks s3,

unlocks s3 and unlocks s2

36

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

C

s1 locked s1 unlocked

s3 locked

blocked by C

(attemp to lock s2)

s2 locked
s3 locked

s3 unlockeds2 unlocked

s2 unlockeds3 unlockeds2 locked

Critical section
guarded by s1

Critical section
guarded by s2

Critical section
guarded by s3

• t7: B completes and C is resumed.

37

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

C

s1 locked s1 unlocked

s3 locked

blocked by C

(attemp to lock s2)

s2 locked
s3 locked

s3 unlockeds2 unlocked

s2 unlockeds3 unlockeds2 locked

Critical section
guarded by s1

Critical section
guarded by s2

Critical section
guarded by s3

• t8: C completes

38

• A is never blocked

• B is blocked by C during the intervals [t2, t3] and [t4, t6].
However, B is blocked for no more than the duration

of one time critical section of the lower priority task C

even though the actual blocking occurs over disjoint time

intervals

39

General properties:

• with ordinary priority inheritance, a task i can be blocked

for at most the duration of min(n,m) critical sections,

where n is the number of lower priority tasks that could

block i and m is the number of semaphores that can be

used to block i

• with the priority ceiling inheritance, a task i can be blocked

for at most the duration of one longest critical section

• sometimes priority ceiling introduces unnecessary blocking

but the worst-case blocking delay is much less than for

ordinary priority inheritance

40

The Immediate Inheritance Protocol

• when a task obtains a lock the priority of the task is

immediately raised to the ceiling of the lock

• the same worst-case timing behavior as the priority ceiling

protocol

• easy to implement

• on a single-processor system it is not necessary to have

any queues of blocked tasks for the locks (semaphores,

monitors) – tasks waiting to acquire the locks will have

lower priority than the task holding the lock and can,

therefore be queued in ReadyQueue.

• also known as the Priority Ceiling Emulation Protocol or

the Priority Protect Protocol

41

.

Priority Inheritance

Priority inheritance is a common, but not mandatory, feature of

most Java implementations.

The Real-Time Java Specification requires that the priority

inheritance protocol is implemented by default. The priority

ceiling protocol is optional.

42

Mailbox Communication

A process/thread communicates with another process/thread

by sending a message to it.

Synchronization models:

• Asynchronous: the sender process proceeds immediately
after having sent a message. Requires buffer space for sent
but unread messages. Used in the course.

• Synchronous: the sender proceeds only when the message
has been received. Rendez-vous.

• Remote Invocation: the sender proceeds only when a reply
has been received from the receiver process. Extended rendez-
vous. Remote Procedure/Method Call (RPC/RMC).

43

Naming schemes

• Direct naming:

send "message" to "process"

• Indirect naming: uses a mailbox (channel, pipe)

send "message" to "mailbox"

With indirect naming different structures are possible:

– many-to-one

– many-to-many

– one-to-one

– one-to-many

44

Message Types

• system- or user-defined data structures

• the same representation at the sender and at the receiver

• shared address space

– pointer

– copy data

45

Message Buffering

Asynchronous message passing requires buffering.

The buffer size is always bounded.

A process is blocked if it tries to send to a full mailbox.

Problematic for high-priority processes

The message passing system must provide a primitive that

only sends a message if the mailbox has enough space

Similarly, the message passing system must provide a primitive

that makes it possible for a receiver process to test if there is a

message in the mailbox before it reads

46

.

Message Passing

The se.lth.cs.realtime.event package provides support for

mailboxes:

• asynchronous message passing

• both direct naming and indirect naming can be imple-

mented

However, in most examples one assumes that each thread

(e.g., Consumer threads) contains a mailbox for incoming

messages.
47

.

Messages

Messages are implemented as instances of objects that are

subclasses to RTEvent

Messages are always time-stamped.

Constructors:

• RTEvent(): Creates an RTEvent object with the current thread
as source and a time-stamp from the current system time.

• RTEvent(long ts): Creates an RTEvent object with the current
thread as source and with the specified time stamp.

• RTEvent(java.lang.Object source): Creates an RTEvent
object with the specified source object and a time-stamp from
the current system time.

• RTEvent(java.lang.Object source, long ts) : Creates an
RTEvent object with the specified source object and time
stamp.

48

.

A time-stamp supplied to the constructor may denote the time

when input was sampled, rather than when e.g. an output

event was created from a control block or digital filter.

The source is by default the current thread, but a supplied

source may denote some passive object like a control block

run by an external thread (scan group etc.).

49

.

Methods:

• getSource(): Returns the source object of the RTEvent.

• getTicks(): Returns the event’s time stamp in number of

(system dependent) ticks.

• getSeconds(): Returns the time-stamp expressed in

seconds.

• getMillis(): Returns the time-stamp expressed in milli-

seconds.

• and some others

50

.

Mailboxes

Mailboxes (message buffers) implemented by the class

RTEventBuffer

Synchronized bounded buffer with both blocking and non-

blocking methods for sending (posting) and reading (fetching)

messages.

Constructor:

• RTEventBuffer(int maxSize)

Methods:

• doPost(RTEvent e): Adds an RTEvent to the queue, blocks

caller if the queue is full.

• tryPost(RTEvent e): Adds an RTEvent to the queue,

without blocking if the queue is full. Returns null if the

buffer is non-full, the event e otherwise.
51

.

• doFetch(): Returns the next RTEvent in the queue, blocks

if none available.

• tryFetch(): Returns the next available RTEvent in the

queue, or null if the queue is empty.

• awaitEmpty(): Waits for buffer to become empty.

• awaitFull(): Waits for buffer to become full.

• isEmpty(): Checks if buffer is empty.

• is Full(): Checks if buffer is full.

• plus some others

The class attributes are declared protected in order to make it

possible to create subclasses with different behavior.
52

.

Producer-Consumer Example

class Producer extends Thread {

Consumer receiver;

MyMessage msg;

public Producer(Consumer theReceiver) {

receiver = theReceiver;

}

public void run() {

while (true) {

char c = getChar();

msg = new MyMessage(c);

receiver.putEvent(msg);

}

}

}
53

.class Consumer extends Thread {

private RTEventBuffer inbox;

public Consumer(int size) {

inbox = new RTEventBuffer(size);

}

public void putEvent(MyMessage msg) {

inbox.doPost(msg);

}

public void run() {

RTEvent m;

while (true) {

m = inbox.doFetch();

if (m instanceof MyMessage) {

MyMessage msg = (MyMessage) m ;

useChar(msg.ch);

} else ...

// Handle other messages

};

}

}

}

54

Message Passing add-ons

• Selective waiting: a process is only willing to accept

messages of a certain category from a mailbox or directly

from a set of processes. (Ada)

• Time out: time out on receiver processes.

• Priority-sorted mailboxes: urgent messages have priority

over non-urgent messages.

55

Mailboxes in Linux

Mailbox communication is supported in a number of ways in

Linux

One possibility is to use pipes, named pipes (FIFOs), or

sockets, directly

Another possibility is POSIX Message Passing

• Very similar in functionality to the Mailbox system already

presented

Several other alternatives, e.g., D-Bus

http://www.freedesktop.org/wiki/Software/dbus

56

Message Passing: Summary

Can be used both for communication and synchronization.

Using empty messages a mailbox corresponds to a semaphore.

Well suited for distributed systems.

57

.

Passing objects through a buffer

Using a buffer to pass objects from a sender thread to a

receiver thread.

public class Buffer {

private Object data;

private boolean full = false;

private boolean empty = true;

public synchronized void put(Object inData) {

while (full) {

try {

wait();

} catch (InterruptedException e) {}

}

data = inData;

full = true;

empty = false;

notifyAll();

}

58

.

public synchronized Object get() {

while (empty) {

try {

wait();

} catch (InterruptedException e) {}

}

full = false;

empty = true;

notifyAll();

return data;

}

}

59

.

Sender thread:

public void run() {

Object data = new Object();

while (true) {

// Generate data

b.put(data);

}

}

Receiver thread:

public void run() {

Object data;

while (true) {

data = b.get();

// Use data

}

} 60

.

Very dangerous. The object reference in the receiver thread

points at the same object as the object reference in the sender

thread. All modifications will be done without protection.

Approach 1: New objects

• the sender can create new objects before sending

public void run() {

Object data = new Object();

while (true) {

// Generate data

b.put(data);

data = new Object();

}

}

61

.
Approach 2: Copying in the buffer

public synchronized void put(Object inData) {

while (full) {

try {

wait();

} catch (InterruptedException e) {}

}

data = inData.clone();

full = true;

empty = false;

notifyAll();

}

• the clone only performs a "shallow copy" - all references

within the object are only copied and not cloned

• write an application-specific clone method
62

.

Approach 3: Immutable objects

• An immutable object is an object that cannot be modified

once it has been created.

• An object is immutable if all data attributes are declared

private and no methods are declared that may set new

values to the data attributes

• The sender sends immutable objects. It is not possible for

the user to modify them in any dangerous way.

63

