
Lecture 3: Synchronization & Communication -

Part 1

[RTCS Ch. 4]

• common resources & mutual exclusion

• semaphores

• monitors

1

Communication & Synchronization

Concurrent processes are not independent

Communication

Synchronization

Communication refers to the transfer of information between

multiple processes. When communicating, synchronization is

usually required, as one process must wait for the communica-

tion to occur. In many cases, the synchronization is the impor-

tant activity, and no other communication takes place.

2

Communication Using Shared Memory

In a multi-threaded applications the threads can use the shared

memory to communicate

One thread writes to a variable and another thread reads from

the same variable

This must, however, be done with care!!

3

Shared variables

A simple way for processes to communicate??

Problems:

ProcessA ProcessB

...
n := n + 1;
...

...
n := n - 1;
...

Assume that n = 5 and that A and B executes once.

What will the value of n be?

4

Problem:

• the high-level instructions are not atomic (are not indivisi-

ble)

ProcessB

...
LOAD R2,N
SUB R2,1
STORE R2,N
...

ProcessA

...
LOAD R1,N
ADD R1,1
STORE R1,N
...

Interrupts that cause context switch may occur in between every
machine instruction.

In Java the same situations hold between Java statements and Java
byte code statements.

For example, write operations with the double and long variable
types are not atomic.

However, if the data attributes are declared as volatile or if special

Atomic variable classes are used the atomicity is extended

5

ProcessBProcessA

LOAD R2,N
SUB R2,1
STORE R2,N
...

N R1 R2

5

6
5
4

6

5

4

...
LOAD R1,N
ADD R1,1

STORE R1,N
...

“Race condition”

6

ProcessBProcessA N R1 R2

55

4

LOAD R2,N

SUB R2,1
STORE R2,N
...

5
6

6

4

LOAD R1,N
ADD R1,1
STORE R1,N
...

7

Mutual Exclusion

We must in some way guarantee that only one thread at a time

may access the shared variable

Mutual exclusion (“ömsesidig uteslutning”)

The shared variable can be viewed as a common resource

The code that manipulates the shared variable is known as a

critical section

8

Common Resources

Resources that are common to several processes

• shared variables

• external units (keyboards, printers, screens, ...)

• non-reentrant code

Guarantee exclusive access to the common resources

9

Non-reentrant code

Code that may be called by more than one process at the

same time must be reentrant.

Process A Function

Context switch

Process B

Context switch

Function call
Function call

Occurs, e.g., if a function uses global variables for returning

results.

Often a problem with code libraries, operating system calls, ...
10

Mutual Exclusion

A mechanism that allows a process to execute a sequence of

statements (a critical section) indivisibly.

Disabling the interrupts:

Process A

...

disable interrupts;

access critical section;

enable interrupts;

...

No other process can execute while A is inside the critical section.

Not what we want. It is only necessary to prevent other processes
from entering the critical section while it is occupied.

Only works in the uni-processor case.
11

Use a flag:

Process A Process B

... ...

REPEAT UNTIL free; REPEAT UNTIL free;

free := FALSE; free := FALSE;

access critical section; access critical section;

free := TRUE; free := TRUE;

... ...

Problems:

• free flag is also a shared variable

• polling (busy-wait)

12

Process A Process B

... ...

REPEAT UNTIL free;

REPEAT UNTIL free;

free := FALSE;

access critical section;

free := FALSE; ...

access critical section;

...

Both A and B in the critical section.

With three flags the approach works (Dekker’s algorithm)

13

Atomic Operations

The previous approach would work if the test on the free flag

and the assignment were a single atomic operation.

Atomic test-and-set operations are common for many proces-

sors

Atomic operations that read a variable from memory and as-

sign it a new value (or assign and write to memory atomically)

are also common, e.g., in Linux

14

Semaphores

A nonnegative counter + two operations

• wait

• signal

Logical semantics:

wait(S); <---> WHILE S = 0 DO (* busy-wait *) END;

S := S - 1;

signal(S); <---> S := S + 1;

Wait and signal are atomic.

Obtained by disabling interrupts.

Implemented with priority-sorted wait queues to avoid busy-

wait.
15

Semaphores for mutual exclusion

Process A Process B

... ...

Wait(mutex); Wait(mutex);

access critical section; access critical section;

Signal(mutex); Signal(mutex);

... ...

The semaphore mutex is initialized to 1.

The mutex semaphore counter will only have the values 0 or 1.

Also known as a binary semaphore.

16

Semaphores for synchronization

Asymmetric synchronization:

Process A Process B

LOOP LOOP

Signal(Aready); Wait(Aready);

WaitTime(time); ...

END; END;

Aready initialized to 0

Here the semaphores may take any non-negative value =

counting semaphore.

Sometimes different datatypes are provided for binary and

counting semaphores.
17

Symmetric synchronization:

Process A Process B

LOOP LOOP

... ...

Signal(Aready); Signal(Bready);

Wait(Bready); Wait(Aready);

... ...

END; END;

18

STORK

.

STORK Semaphores

TYPE

Semaphore = POINTER TO SemaphoreRec;

SemaphoreRec = RECORD

counter : CARDINAL;

waiting : Queue;

(* Queue of waiting processes *)

END;

wait(sem); <--->

IF sem^.counter = 0 THEN

insert Running into waiting queue;

ELSE sem^.counter := sem^.counter - 1;

signal(sem); <--->

IF waiting is not empty THEN

move the first process in

waiting to ReadyQueue;

ELSE sem^.counter := sem^.counter + 1;
19

STORK

.

Semaphores: Basic version

PROCEDURE Wait(sem: Semaphore);

VAR

oldDisable : InterruptMask;

BEGIN

oldDisable := Disable();

WITH sem^ DO

IF counter > 0 THEN

DEC(counter);

ELSE

MovePriority(Running,waiting);

Schedule;

END;

END;

Reenable(oldDisable);

END Wait;
20

STORK

.

PROCEDURE Signal(sem: Semaphore);

VAR

oldDisable : InterruptMask;

BEGIN

oldDisable := Disable();

WITH sem^ DO

IF NOT isEmpty(waiting) THEN

MovePriority(waiting^.succ, ReadyQueue);

Schedule;

ELSE

INC(counter);

END;

END;

Reenable(oldDisable);

END Signal;
21

STORK

.

PROCEDURE New

(VAR semaphore : Semaphore;

initialValue : INTEGER;

name : ARRAY OF CHAR);

(* Creates the ’semaphore’ and initializes

it to ’initalValue’.

’name’ is used for debugging purposes. *)

PROCEDURE Dispose

(VAR semaphore : Semaphore);

(* Deletes the semaphore. If

there are processes waiting for

the semaphore, an error is reported. *)

22

Semaphore: Improved version

The standard way of implementing semaphores can in certain
situations have undesired consequences

Process A (High) Process B (Low)

Wait(mutex); ...

... Wait(mutex);

Signal(mutex); ...

Wait(mutex); ...

• A does a wait on mutex.

• Context switch from A to B (e.g. A decides to wait for time)

• B does a wait on mutex. B is inserted in the waiting queue and
a context switch to A is performed.

• A does a signal on mutex. B is moved into ReadyQueue. No
context switch takes place.

• A does a wait on mutex. Since counter = 0, A is inserted in the
waiting queue and a context switch to B takes place.

23

Since Process A has higher priority than Process B it would

have been more intuitive if it had been A that would have been

holding the semaphore at the end.

Improved implementation: (due to Anders Blomdell)

wait(sem); <---> LOOP

IF sem^.counter = 0 THEN

insert Running into waiting queue

ELSE sem^.counter := sem^.counter - 1;

EXIT;

END; (* IF *)

END; (* LOOP *)

signal(sem); <---> IF waiting is not empty THEN

move the first process in waiting

to ReadyQueue

END;

sem^.counter := sem^.counter + 1;

24

Behavior:

• A does a wait. counter := 0

• Context switch from A to B.

• B does a wait, is inserted in the waiting queue, and a context
switch to A is made.

• A does a signal. B is moved to ReadyQueue. No context switch.
counter := 1

• A does a wait. counter := 0. A holds the semaphore.

• Context switch from A to B. B checks again if the counter is
zero. B is moved to the waiting queue. Context switch to A.

• A does a signal. B is moved to ReadyQueue No context switch.
counter := 1.

• Context switch to B. The counter is 1, and B set counter := 0

and continues executing, i.e., holds the semaphore

25

.

Atomic Classes in Java

• A small set of classes that allows atomic reads, writes,

and test-and-set operations

• In java.util.concurrent.atomic

• AtomicInteger, AtomicBoolean, AtomicLong,

AtomicReference + arrays of these

• boolean compareAndSet(expectedValue, updateValue) –

test-and-set

• int get() – read method (on an AtomicInteger)

• void set(value) – write method

26

.

Java Semaphores

Semaphores were originally not a part of Java.

• added in version 1.5,

• Semaphore class

• the acquire() method corresponds to wait()

• the release() method corresponds to signal()

• part of java.util.concurrent

•

It is, however, also possible to implement a Semaphore class

using synchronized methods.

Approach used in the course

27

Synchronization in Linux

Linux supports synchronization in a variery of different ways.

Part of it is provided by the Linux kernel itself

• exist in kernel space, i.e., is intended to be used primarily by
the kernel itself

• can be used from user space application through syscalls but it
often quite inefficient

Part of it is provided by Posix (pthreads) and its various extensions
(Threads Extension, Real-Time Extensions)

• intended to be used by user space applications

• internally implemented by the kernel level primitives

28

Support for Locks in Linux

Spin Locks (kernel):

• similar to a binary semaphorem but a thread that wants to take
a lock held by another thread, will wait through spinning (busy-
waiting)

• assumes that the thread holding the lock can be preempted

• inefficient use of CPU

• should only be held for very short periods of time

Semaphores (kernel):

• counting semaphores

• operations up() (=wait) and down() (=signal)

• semaphores used only for mutual execution are known as
mutex’es

29

Condition Synchronization

A combination of access to common data under mutual

exclusion with synchronization of type “data is available”

Checking some logical condition on the common data.

Condition becoming true = event

The Producer-Consumer Prolem

Producer
processes

Consumer
processes

Data Buffer

Unbounded buffer 30

STORK

.

TYPE CriticalSection = RECORD

mutex, change : semaphore;

waiting : INTEGER;

databuffer : buffer;

END;

VAR R: CriticalSection;

Producer Process Consumer Process

... ...

WITH R DO WITH R DO

Wait(mutex); Wait(mutex);

enter data into buffer; WHILE NOT "data available" DO

WHILE waiting > 0 DO INC(waiting);

DEC(waiting); Signal(mutex);

Signal(change); Wait(change);

END; Wait(mutex);

Signal(mutex); END;

END; get data from buffer;

... Signal(mutex);

END;

31

STORK

.

The condition test must be performed under mutual exclusion

The WHILE construct is needed because there are several

Consumer processes that are waken up at the same time.

A more elegant solution to the problem is obtained with

monitors.

32

Semaphores: Summary

A low-level real-time primitive that can be used to obtain

mutual exclusion and synchronization.

Requires programmer discipline. A misplaced or forgotten wait

or signal is difficult to detect and may have disastrous results.

Condition synchronization with semaphores is complicated.

Not available in original Java.

33

Monitors

A communication mechanism that combines mutual exclusion with
condition synchronization.

Sometimes called mutex.

Consists of:

• internal data structures (hidden)

• mutually exclusive operations upon the data structure (STORK:
monitor procedures, Java: synchronized methods)

Abstract data type (STORK) or object (Java)

Initialization
 code

Shared data

 Operations

34

STORK

.

Monitor Procedures

Mutually exclusive

Enclosed in an enter-leave pair.

(* Monitor *) PROCEDURE Proc1();

BEGIN

Enter(mutex);

...

Leave(mutex);

END Proc1;

mutex: a variable of type Monitor

Acts as a mutual exclusion semaphore.
35

Condition Variables

Condition synchronization is obtained with condition variables.

Also known as monitor events or event variables.

A condition variable:

• associated with a monitor

• has a queue of processes waiting for the event

36

Operations on Condition Variables

Two operations:

• a thread can decide to wait for an event

• a thread can notify other thread(s) that an event has

occurred

May only be called from within the monitor.

The monitor is released if a thread decides to wait for an

event.

When a thread becomes notified about an event, it reenters

the monitor.

37

STORK

.

Operations on Condition Variables

Condition variables are represented by variables of type Event.

PROCEDURE Await(ev: Event);

Blocks the current process and places it in the queue associated

with the event. Await also performs an implicit Leave. May only be

called from within a monitor procedure.

PROCEDURE Cause(ev: Event);

All processes that are waiting in the queue of the event are moved

to the monitor queue and inserted according to their priority. If no

processes are waiting, cause corresponds to a null operation. May

only be called from within a monitor procedure.
38

STORK

.

PROCEDURE NewEvent(VAR ev : Event;

mon : Monitor;

name: ARRAY OF CHAR);

Initializes the event and associates it with the monitor guarded by

mon.

PROCEDURE DisposeEvent(ev: Event);

Deletes the event.
39

STORK

.

The Producer–Consumer problem

TYPE CriticalSectionMonitor = RECORD

mon : Monitor;

change : Event;

databuffer : buffer;

END;

VAR R: CriticalSectionMonitor;

Producer Process Consumer Process

... ...

WITH R DO WITH R DO

Enter(mon); Enter(mon);

enter data into buffer; WHILE NOT "data available" DO

Cause(change); Await(change);

Leave(mon); END;

END; get data from buffer;

... Leave(mon);

END;

...

40

Spurious Wakeups

Threads that are waiting for an event should always check that

the condition that they are waiting for still is true when they are

resumed.

Reasons:

• Several threads may be woken up and it is not sure

that the condition still is true when a thread eventually

executes.

• Certain platforms, e.g., certain Java platforms and POSIX

platforms may generate spurious wakeups

– wakeups caused by the computing platform

– weird!!

41

STORK

.

Monitor Procedures

Initialization
 code

Process currently
accessing the
monitor.

Shared data
Monitor queue

Event queues

42

STORK

.

Monitor Implementation

Similar to the improved semaphore implementation.

TYPE

Monitor = POINTER TO MonitorRec;

Event = POINTER TO EventRec;

MonitorRec = RECORD

waiting : Queue;

blocking : ProcessRef;

events : Event;

END;

EventRec = RECORD

evMon : Monitor;

waiting : Queue;

next : Event;

END;

43

STORK

.

PROCEDURE Enter(mon: Monitor);

VAR

oldDisable : InterruptMask;

BEGIN

WITH mon^ DO

oldDisable := Disable();

LOOP

IF blocking = NIL THEN

blocking := Running;

EXIT;

ELSE

MovePriority(Running,waiting);

Schedule;

END;

END;

Reenable(oldDisable);

END;

END Enter;

44

STORK

.

PROCEDURE Leave(mon: Monitor);

VAR

oldDisable : InterruptMask;

BEGIN

WITH mon^ DO

oldDisable := Disable();

blocking := NIL;

IF NOT IsEmpty(waiting) THEN

MovePriority(waiting^.succ,ReadyQueue);

Schedule;

END;

Reenable(oldDisable);

END;

END Leave; 45

STORK

.

PROCEDURE Await(ev: Event);

VAR

oldDisable : InterruptMask;

BEGIN

oldDisable := Disable();

Leave(ev^.evMon);

MovePriority(Running,ev^.waiting);

Schedule;

Reenable(oldDisable);

Enter(ev^.evMon);

END Await;

46

STORK

.

PROCEDURE Cause(ev : Event);

VAR

oldDisable : InterruptMask;

pt : ProcessRef;

BEGIN

oldDisable := Disable();

LOOP

pt := ev^.waiting^.succ;

IF ProcessRef(ev^.waiting) = pt THEN

EXIT (* Event queue empty *)

ELSE

MovePriority(pt,ev^.evMon^.waiting);

END;

END;

Reenable(oldDisable);

END Cause;

47

.

Synchronized Methods

Monitors are implemented as Java objects with synchronized

methods.

The Java platform maintains a lock for every object that has

synchronized methods.

Before a thread is allowed to start executing a synchronized

method it must obtain the lock.

When a thread finishes executing a synchronized method the

lock is released.

Threads waiting to acquire a lock are blocked.

Java does not specify how blocked threads are stored or which

policy that is used to select which thread that should acquire a

newly released lock.

Often a priority-sorted queue is used.
48

.

Synchronized Methods

public class MyMonitor {

..

..

public synchronized void method1(...) {

..

}

public synchronized void method2(...) {

..

}

}

49

.

Synchronized Methods

public class MyMonitor {

public long x;

..

public synchronized void method1(...) {

..

}

public void method2(...) {

..

}

}

Using an unsynchronized method (method2) it is possible to

access an object without protection - may be dangerous.

Public attributes can be accessed directly using dot-notation

without protection - may be dangerous.
50

.

Synchronized Methods

Java locks are reentrant. A thread holding the lock for an

object may call another synchronized method of the same lock.

In STORK this would lead to a deadlock.

Static methods can also be synchronized.

• each class has a class lock

• the class lock and the instance locks are distinct, unrelated

locks
51

.

Synchronized Blocks

Synchronization can be provided for smaller blocks of code

than a method.

public void MyMethod() {

...

synchronized (this) {

...

...

}

...

}

Acquires the same object lock as if it had been the whole

method that had been synchronized.
52

.

Using synchronous blocks it is also possible to synchronize on

other objects than this.

public void MyMethod(Object obj) {

...

synchronized (obj) {

...

}

...

The code of the synchronized block is, from a synchronization

point of view, executed as if it instead had been a call to a

synchronized method of obj.
53

.

Condition Synchronization

However, Java only supports a single, anonymous condition

variable per locked object.

The Java method wait() corresponds to STORK’s Await(ev :

Event):

• method of class Object

• no argument (single, anonymous condition variable)

• may only be called within synchronization

• the calling thread releases the lock and becomes blocked

• Java does not specify how the blocking is implemented,

however, in most implementations a priority-sorted queue

is used
54

.

• throws the runtime exception IllegalMonitorStateException

if the current thread is not the owner of object’s lock

• throws the checked exception InterruptedException if

another thread has interrupted the current thread

try {

wait();

} catch (InterruptedException e) {

// Exception handling

}

• takes an optional timeout argument, wait(long timeout)

• the thread will wait until notification or until the timeout

period has elapsed
55

.

Condition Synchronization

Java method notifyAll() corresponds to STORK’s Cause(ev :

Event):

• method of class Object

• no argument

• may only be called within synchronization

• all threads waiting for the anonymous event for the object

are woken up (moved to the “waiting” queue of the object)

The Java method notify() just wakes up one thread:

• not available in STORK

• not specified which thread that is woken up

• in most implementation the one that is first in the queue

• may only be called within synchronization
56

.

Anonymous Condition Variables

Having only one condition variable per synchronized object can

lead to inefficiency.

Assume that several threads need to wait for different condi-

tions to become true.

With Java synchronized objects the only possibility is to notify

all waiting threads when any of the conditions become true.

Each thread must then recheck its condition, and, perhaps,

wait anew.

May lead to unnecessary context switches

Java design flaw!
57

.

Producer-Consumer I

Multiple producers and consumers. Buffer of length 1 contain-

ing an integer.

Four classes: Buffer, Consumer, Producer, Main.

public class Buffer {

private int data;

private boolean full = false;

private boolean empty = true;

58

.

public synchronized void put(int inData) {

while (full) {

try {

wait();

} catch (InterruptedException e) {

e.printStackTrace();

}

}

data = inData;

full = true;

empty = false;

notifyAll();

}

59

.

public synchronized int get() {

while (empty) {

try {

wait();

} catch (InterruptedException e) {

e.printStackTrace();

}

}

full = false;

empty = true;

notifyAll();

return data;

}

}

60

.

public class Consumer extends Thread {

private Buffer b;

public Consumer(Buffer bu) {

b = bu;

}

public void run() {

int data;

while (true) {

data = b.get();

// Use data

}

}

}
61

.

public class Producer extends Thread {

private Buffer b;

public Producer(Buffer bu) {

b = bu;

}

public void run() {

int data;

while (true) {

// Generate data

b.put(data);

}

}

}
62

.

public class Main {

public static void main(String[] args) {

Buffer b = new Buffer();

Producer w = new Producer(b);

Consumer r = new Consumer(b);

w.start();

r.start();

}

}

63

.

Class Semaphore

Semaphores can be implemented using synchronized methods

public final class Semaphore {

// Constructor that initializes the counter to 0

public Semaphore();

// Constructor that initilizes the counter to init

public Semaphore(int init);

// The wait operation (Wait is a Java keyword)

public synchronized void take();

// The signal operation

public synchronized void give();

}
64

.

Class ConditionVariable

Condition variables can also be implemented using synchro-

nization.

Can be used to obtain condition synchronization in combina-

tion with class Semaphore.

public class ConditionVariable {

// Constructor that associates the condition variable

// with a semaphore

public ConditionVariable(Semaphore sem);

// The wait operation

public void cvWait();

65

.

// The notify operation

public synchronized void cvNotify();

// The notifyAll operation

public synchronized void cvNotifyAll();

}

66

.

Home Work

Study the implementation of the classes Semaphore and

ConditionVariable in the text book.

67

.

Producer-Consumer II

Using classes Semaphore and ConditionVariable

public class Buffer {

private Semaphore mutex;

private ConditionVariable nonFull, nonEmpty;

private int data;

private boolean full = false;

private boolean empty = true;

public Buffer() {

mutex = new Semaphore(1);

nonEmpty = new ConditionVariable(mutex);

nonFull = new ConditionVariable(mutex);

}

68

.

public void put(int inData) {

mutex.take();

while (full) {

try {

nonFull.cvWait();

} catch (InterruptedException e) {

e.printStackTrace();

}

}

data = inData;

full = true;

empty = false;

nonEmpty.cvNotifyAll();

mutex.give();

}

69

.

public int get() {

int result;

mutex.take();

while (empty) {

try {

nonEmpty.cvWait();

} catch (InterruptedException e) {

e.printStackTrace();

}

}

result = data;

full = false;

empty = true;

nonFull.cvNotifyAll();

mutex.give();

return result;

}

}
70

.

• The other classes remain the same

• In this case nothing is gained by having two condition

variables since the two conditions are mutually exclusive

(the buffer cannot be full and empty at the same time)

71

.

Monitors in Java

The following basic programming rules are good practice to

follow:

• Do not mix a thread and a monitor in the same ob-

ject/class

– Hence, a monitor should be a passive object with

synchronized access methods.

– However you may use a passive monitor object as an

internal object of another, possible active, object

• Do not use synchronized blocks unnecessarily.
72

Monitors in Linux

Monitors (mutexes) and condition variables are supported by the
Posix library

Mutexes:

• pthread_mutex_lock() - tries to lock the mutex

• pthread_mutex_unlock() - unlocks the mutex

Condition variables:

• pthread_cond_wait - unlocks the mutex and waits for the
condition variable to be signaled.

• pthread_cond_timedwait - place limit on how long it will block.

• pthread_cond_signal - restarts one of the threads that are
waiting on the condition variable cond.

• pthread_cond_broadcast - wake up all threads blocked by the
specified condition variable.

73

Monitors: Summary

A high-level primitive for mutual exclusion and condition

synchronization.

Implemented using synchronized methods/blocks in Java.

Semaphores and condition variables can be implemented.

74

