
Lecture 14: Discrete Control

[RTCS Ch. 12 + These Slides]

• Discrete Event Systems

• State Machine-Based Formalisms

• Statecharts

• Grafcet

• Laboratory 2

• Petri Nets

• Implementation

– Not covered in the lecture. Homework.
1

Discrete Event Systems

Definition:

A Discrete Event System (DES) is a discrete-state, event-driven
system, that is its state evolution depends entirely on the occurrence

of asynchronous discrete events over time.

Sometimes the name Discrete Event Dynamic System (DEDS)

is used to emphasize the dynamic nature of DES.

2

DES:

1. The state space is a discrete set.

2. The state transition mechanism is event-driven.

3. The events need not to be synchronized by, e.g., a clock.

Continuous systems:

1. Continuous-state systems (real-valued variables)

2. The state-transition mechanism is time-driven.

Continuous discrete-time systems x(k+1) = Ax(k)+Bu(k) can
be viewed as an event-driven system synchronized by clock
events.

3

Continuous System

State trajectory is the solution of a differential equation

ẋ(t) = f (x(t),u(t), t)

x(t)

t

X = R

4

Discrete Event System

State trajectory (sample path) is piecewise constant function
that jumps from one value to another when an event occurs.

x(t)

t

X = (s1, s2, s3, s4, s5, s6)

s1

s2

s3

s4

s5

s6

t1 t2 t3 t4 t5 t6 t7

e1 e2 e3 e4e5 e6 e7
5

Discrete Control Systems

All processes contain discrete elements:

• continuous processes with discrete sensors and/or actua-
tors

• discrete processes

– manufacturing lines, elevators, traffic systems, ...

• mode changes

– manual/auto, startup/shutdown

– production (grade) changes

• alarm and event handling

6

Discrete Logic

• Larger in volume than continuous control

• Very little theoretical support

– verification, synthesis

– formal methods beginning to emerge

– still not widespread in industry

7

Basic Elements

• Boolean (binary) signals – 0, 1,
f alse, true, a, ā

• expressions
a

a or b (a + b)

a and b (a b)

Boolean algebra

Truth values
Truth value tables

• events

a

^a

a
8

Logic Nets

• Combinatorial nets

– outputs = f(inputs)

– interlocks, "förreglingar"

• Sequence nets

– newstate = f(state,inputs)

– outputs = g(state,inputs)

– state machines

– automata

Asynchronous nets or synchronous (clocked) nets

Logic net

Inputs Outputs

New stateState

Delay
9

• Discrete Event Systems

• State Machine-Based Formalisms

• Statecharts

• Grafcet

• Laboratory 2

• Petri Nets

• Implementation

– Not covered in the lecture. Homework.

10

State Machines

Formal properties [analysis possible in certain cases

Using state machines is often a good way to structure code.

Systematic ways to write automata code often not taught in
programming courses.

11

Moore Machine

State−0 State−1

State−2

Out−a

Out−c

In−a

In−a

In−b

In−c

In−b

In−a

Out−b

State transitions in response to input events

Output events (actions) associated with states
12

Mealy Machine

State−0 State−1

State−2

Out−a

In−b

In−a

Out−b

In−c

Out−c

In−b

Out−a

In−a

Out−b

In−c

Out−c

Output events (actions) associated with input events 13

State Machine Extensions

Ordinary state machines lack structure

Extensions needed to make them practically useful

• hierarchy

• concurrency

• history (memory)

14

• Discrete Event Systems

• State Machine-Based Formalisms

• Statecharts

• Grafcet

• Laboratory 2

• Petri Nets

• Implementation

– Not covered in the lecture. Homework.

15

Statecharts

D. Harel, 1987

Statecharts =

• state machine

• hierarchy

• concurrency

• history

16

Statechart Syntax

D

A

C

B

c (P)

a / e

b

d

XOR Superstate

Input event

Output event

State

Condition
"guard"

17

Statecharts Concurrency

AND Superstates:

Y

A D

B

C

E

G

F
a b (in G)

c

d

a

g

Y is the orthogonal product of A and D

When in state (B,F) and event a occurs, the system transfers
simultaneously to (C,G).

18

History Arrows

Alarm

Off

On

d d

H

a

On event ‘a’ the last visited state within D becomes active.

19

Syntax

Interfaces for AND Superstates:

A D

B

C

E

G

F

J
H

K L

H

ν δ η(in B)

ǫβθαω

20

• δ exit from J [(B, E)

• α exit from K [(C, F)

• ν exit from J [(B, F)

• β exit from L[(C,most recently visited state in D)

• ω exit from (B,G) [K

• η exit from (B, F) [H

• θ exit from (C,D) [K

• ǫ exit from (A,D) [L

21

Statechart Tools

Statecharts popular for modeling, simulation, and code generation

Used to represent state-transition diagrams in UML tools (Ratio-
nal/Rose, Rhapsody, ...)

Stateflow for Matlab/Simulink

22

Statechart Semantics

Unfortunately, Harel only gave an informal definition of the
semantics

As a results a number of competing semantics were defined.

In 1996, Harel presented his semantics (the Statemate seman-
tics) of Statechart and compared with 11 other semantics.

The lack of a single semantics is still the major problem with
Statecharts

Each tool vendor defines his own.

23

• Discrete Event Systems

• State Machine-Based Formalisms

• Statecharts

• Grafcet

• Laboratory 2

• Petri Nets

• Implementation

– Not covered in the lecture. Homework.

24

Grafcet

Extended state machine formalism for implementation of
sequence control

Industrial name: Sequential Function Charts (SFC)

Defined in France in 1977 as a formal specification and
realization method for logical controllers

Part of IEC 61131-3 (industry standard for PLC controllers)

25

Basic elements

Steps:

• active or inactive

S1

S1.x = 1 when active

S1.T = number of time units since the
 step last became active

Initial step

Transitions ("övergång"):

condition true and/or event occurred +
previous step active

26

Control structures

Alternative paths:

• branches

a a

mutually exclusive

• repetition

27

Parallel paths:

join
(synchronization)

split

28

Legal GrafcetIllegal Grafcet

29

Semantics

1. The initial step(s) is active when the function chart is
initiated.

2. A transition is fireable if:

• all steps preceding the the transition are active (en-
abled).

• the receptivity (transition condition and/or event) of the
transition is true

A fireable transition must be fired.

3. All the steps preceding the transition are deactivated and
all the steps following the transition are activated when a
transition is fired

4. All fireable transitions are fired simultaneously

5. When a step must be both deactivated and activated it
remains activated without interrupt 30

a = 1 or 0 a = 0

a = 1

a) Not enabled b) Enabled but not firable

c) Firable d) After the change from c)

31

Unreachable grafcets

32

Unreachable grafcets

33

Unreachable grafcets

34

Unreachable grafcets

35

Unsafe grafcets

36

Unsafe grafcets

37

Unsafe grafcets

38

Unsafe grafcets

39

Unsafe grafcets

?

40

Actions
Action block

Action types:

• standard action (level action)

S1
V

S1

V

S1
V

V

V

S1

S2
S2

41

• stored action (impulse action)
logical assignment

S1

S2

1 Unstable situation
(stored actions performed)

S V = 1

S V = 0

42

S1

t

V
Standard

action

S1

t

V

Conditional

action
S1

t

condition

S1

cond.

t

V

S1

S2

t1

t2

S1

t1

V

S2

t2

Stored

action

C V

S V = 1

S V = 0

43

S1

t

S1

t

V

S1

t

S1

t

V

Time−limited
action L V 8 s.

8

Time−delayed
action

D V 5s.

5

44

Hierarchy

Macro Steps:

S1

S2

S3

S21

S22

S23

45

Grafcet/SFC and IEC-1131 Editors

A large number of graphical IEC 1131-3 editors are available.
Generates PLC code or C-code.

46

• Discrete Event Systems

• State Machine-Based Formalisms

• Statecharts

• Grafcet

• Laboratory 2

• Petri Nets

• Implementation

– Not covered in the lecture. Homework.

47

Laboratory 2

Sequential Control

• bead sorter process

JGrafchart - Lund University

• Grafcet/SFC graphical editor

• Grafcet/SFC run-time system

48

JGrafchart

49

Process

Bead Sorter process

Solenoid 1 Solenoid 2

Solenoid 3

Solenoid 4

Colour
Sensor

Bead
Sensor

SORTER

Black bead compartment Yellow bead compartment

50

• Discrete Event Systems

• State Machine-Based Formalisms

• Statecharts

• Grafcet

• Laboratory 2

• Petri Nets

• Implementation

– Not covered in the lecture. Homework.

51

Petri Nets

C.A Petri, TU Darmstadt, 1962

A mathematical and graphical modeling method.

Describe systems that are:

• concurrent

• asynchronous or synchronous

• distributed

• nondeterministic or deterministic

52

Petri Nets

Can be used at all stages of system development:

• modeling

• analysis

• simulation/visualization (“playing the token game”)

• synthesis

• implementation (Grafcet)

53

Application areas

• communication protocols

• distributed systems

• distributed database systems

• flexible manufacturing systems

• logical controller design

• multiprocessor memory systems

• dataflow computing systems

• fault tolerant systems

• ...

54

Introduction

A Petri net is a directed bipartite graph consisting of places P
and transitions T .

Places are represented by circles.

Transitions are represented by bars (or rectangles)

Places and transitions are connected by arcs.

In a marked Petri net each place contains a cardinal (zero or
positive integer) number of tokens of marks.

55

P1

P2

P3 P4

P5 P6

P7

T1

T2

T3 T4

T5

T6

56

Firing rules

1. A transition t is enabled if each input place contains at
least one token.

2. An enabled transition may or may not fire.

3. Firing an enabled transition t means removing one token
from each input place of t and adding one token to each
output place of t.

The firing of a transition has zero duration.

The firing of a sink transition (only input places) only consumes
tokens.

The firing of a source transition (only output places) only
produces tokens.

57

P1

P2

P3 P4

P5 P6

P7

T1

T2

T3 T4

T5

T6

58

P1

P2

P3 P4

P5 P6

P7

T1

T2

T3 T4

T5

T6

59

P1

P2

P3 P4

P5 P6

P7

T1

T2

T3 T4

T5

T6

60

P1

P2

P3 P4

P5 P6

P7

T1

T2

T3 T4

T5

T6

61

P1

P2

P3 P4

P5 P6

P7

T1

T2

T3 T4

T5

T6

62

P1

P2

P3 P4

P5 P6

P7

T1

T2

T3 T4

T5

T6

63

Typical interpretations of places and transitions:

Input Places Transition

Preconditions

Input data

Input signals

Resources needed

Conditions

Buffers

Event

Computation step

Signal processor

Task or job

Clause in logic

Processor

Output Places

Postconditions

Output data

Output signals

Resources needed

Conclusions

Buffers

64

Generalized Petri Nets

2

2

P1 P2

P3

T1

Firing rules:

1. A transition t is enabled if each input place p of t contains
at least w(p,t) tokens

2. Firing a transition t means removing w(p,t) tokens from
each input place p and adding w(t,q) tokens to each
output place q.

65

Generalized Petri Nets

2

2

P1 P2

P3

T1

Firing rules:

1. A transition t is enabled if each input place p of t contains
at least w(p,t) tokens

2. Firing a transition t means removing w(p,t) tokens from
each input place p and adding w(t,q) tokens to each
output place q.

66

Petri Net Variants

Timed Petri Nets:

Times associated with transitions or places

High-Level Petri Nets:

Tokens are structured data types (objects)

Continuous & Hybrid Petri Nets:

The markings are real numbers instead of integers

Mixed continuous/discrete systems

67

Analysis

Properties:

• Live: No transitions can become unfireable.

• Deadlock-free: Transitions can always be fired

• Bounded: Finite number of tokens

• ...

68

Analysis

Analysis methods:

• Reachability methods

– exhaustive enumeration of all possible markings

• Linear algebra methods

– describe the dynamic behaviour as matrix equations

• Reduction methods

– transformation rules that reduce the net to a simpler
net while preserving the properties of interest

69

The classical real-time problems

Dijkstra’s classical problems

• mutual exclusion problem

• producer-consumer problem

• readers-writers problem

• dining philosophers problem

All can be modeled by Petri Nets.

70

Mutual Exclusion

Waiting for
critical
section

Waiting for
critical
section

Executing
inside
critical
section

Executing
inside
critical
section

Executing
outside
critical
section

Executing
outside
critical
section

Process A Process B

Mutex
semaphore

71

Waiting for
critical
section

Waiting for
critical
section

Executing
inside
critical
section

Executing
inside
critical
section

Executing
outside
critical
section

Executing
outside
critical
section

Process A Process B

Mutex
semaphore

72

Waiting for
critical
section

Waiting for
critical
section

Executing
inside
critical
section

Executing
inside
critical
section

Executing
outside
critical
section

Executing
outside
critical
section

Process A Process B

Mutex
semaphore

73

Waiting for
critical
section

Waiting for
critical
section

Executing
inside
critical
section

Executing
inside
critical
section

Executing
outside
critical
section

Executing
outside
critical
section

Process A Process B

Mutex
semaphore

74

Waiting for
critical
section

Waiting for
critical
section

Executing
inside
critical
section

Executing
inside
critical
section

Executing
outside
critical
section

Executing
outside
critical
section

Process A Process B

Mutex
semaphore

75

Waiting for
critical
section

Waiting for
critical
section

Executing
inside
critical
section

Executing
inside
critical
section

Executing
outside
critical
section

Executing
outside
critical
section

Process A Process B

Mutex
semaphore

76

Waiting for
critical
section

Waiting for
critical
section

Executing
inside
critical
section

Executing
inside
critical
section

Executing
outside
critical
section

Executing
outside
critical
section

Process A Process B

Mutex
semaphore

77

Producer-Consumer

Unbounded buffer:
Producer
processes

Consumer
processes

Buffer
Read

Write

78

Producer
processes

Consumer
processes

Buffer
Read

Write

79

Producer
processes

Consumer
processes

Buffer
Read

Write

80

Producer
processes

Consumer
processes

Buffer
Read

Write

81

Producer
processes

Consumer
processes

Buffer
Read

Write

82

Producer
processes

Consumer
processes

Buffer
Read

Write

83

Producer
processes

Consumer
processes

Buffer
Read

Write

84

Bounded buffer:
Producer
processes

Consumer
processes

Buffer

Read

Write

Free
places

Full
places

85

Producer
processes

Consumer
processes

Buffer

Read

Write

Free
places

Full
places

86

Producer
processes

Consumer
processes

Buffer

Read

Write

Free
places

Full
places

87

Producer
processes

Consumer
processes

Buffer

Read

Write

Free
places

Full
places

88

Producer
processes

Consumer
processes

Buffer

Read

Write

Free
places

Full
places

89

Producer
processes

Consumer
processes

Buffer

Read

Write

Free
places

Full
places

90

Producer
processes

Consumer
processes

Buffer

Read

Write

Free
places

Full
places

91

Producer
processes

Consumer
processes

Buffer

Read

Write

Free
places

Full
places

92

Producer
processes

Consumer
processes

Buffer

Read

Write

Free
places

Full
places

93

Producer
processes

Consumer
processes

Buffer

Read

Write

Free
places

Full
places

94

Producer
processes

Consumer
processes

Buffer

Read

Write

Free
places

Full
places

95

Producer
processes

Consumer
processes

Buffer

Read

Write

Free
places

Full
places

96

Readers-Writers

Access
Control

Ready
to write

Writing
Reading

Ready
to read

3

3

Writers processes Readers processes

97

Access
Control

Ready
to write

Writing
Reading

Ready
to read

3

3

Writers processes Readers processes

98

Access
Control

Ready
to write

Writing
Reading

Ready
to read

3

3

Writers processes Readers processes

99

Access
Control

Ready
to write

Writing
Reading

Ready
to read

3

3

Writers processes Readers processes

100

Access
Control

Ready
to write

Writing
Reading

Ready
to read

3

3

Writers processes Readers processes

101

Access
Control

Ready
to write

Writing
Reading

Ready
to read

3

3

Writers processes Readers processes

102

Access
Control

Ready
to write

Writing
Reading

Ready
to read

3

3

Writers processes Readers processes

103

Access
Control

Ready
to write

Writing
Reading

Ready
to read

3

3

Writers processes Readers processes

104

Access
Control

Ready
to write

Writing
Reading

Ready
to read

3

3

Writers processes Readers processes

105

Access
Control

Ready
to write

Writing
Reading

Ready
to read

3

3

Writers processes Readers processes

106

Access
Control

Ready
to write

Writing
Reading

Ready
to read

3

3

Writers processes Readers processes

107

Access
Control

Ready
to write

Writing
Reading

Ready
to read

3

3

Writers processes Readers processes

108

Access
Control

Ready
to write

Writing
Reading

Ready
to read

3

3

Writers processes Readers processes

109

Access
Control

Ready
to write

Writing
Reading

Ready
to read

3

3

Writers processes Readers processes

110

Dining Philosophers

111

Thinks

Picks
left fork

Picks
right fork

Eats

Drops
left fork

Drops
right fork

Fork

Fork

Philosopher

112

Thinks

Picks
left fork

Picks
right fork

Eats

Drops
left fork

Drops
right fork

Fork

Fork

Philosopher

113

Thinks

Picks
left fork

Picks
right fork

Eats

Drops
left fork

Drops
right fork

Fork

Fork

Philosopher

114

Thinks

Picks
left fork

Picks
right fork

Eats

Drops
left fork

Drops
right fork

Fork

Fork

Philosopher

115

Thinks

Picks
left fork

Picks
right fork

Eats

Drops
left fork

Drops
right fork

Fork

Fork

Philosopher

116

Thinks

Picks
left fork

Picks
right fork

Eats

Drops
left fork

Drops
right fork

Fork

Fork

Philosopher

117

Thinks

Picks
left fork

Picks
right fork

Eats

Drops
left fork

Drops
right fork

Fork

Fork

Philosopher

118

Thinks

Picks
left fork

Picks
right fork

Eats

Drops
left fork

Drops
right fork

Fork

Fork

Philosopher

119

Thinks

Picks
left fork

Picks
right fork

Eats

Drops
left fork

Drops
right fork

Fork

Fork

Philosopher

120

Thinks

Picks
left fork

Picks
right fork

Eats

Drops
left fork

Drops
right fork

Fork

Fork

Philosopher

121

Thinks

Picks
left fork

Picks
right fork

Eats

Drops
left fork

Drops
right fork

Fork

Fork

Philosopher

122

Thinks

Eats

Left
fork

Right
fork

123

• Discrete Event Systems

• State Machine-Based Formalisms

• Statecharts

• Grafcet

• Laboratory 2

• Petri Nets

• Implementation

– Not covered in the lecture. Homework.

124

Coding State Machines

Using state machines is often a good way to structure code.

Systematic ways to write automata code often not taught in
programming courses.

Issues:

• active or passive object

• Mealy vs Moore machines

• states with timeout events

• states with periodic activities

Often convenient to implement state machines as periodic
processes with a period that is determined by the shortest time
required when making a state transition.

125

Example: Passive state machine

The state machine is implemented as a synchronized object

public class PassiveMealyMachine {

private static final int STATE0 = 0;

private static final int STATE1 = 1;

private static final int STATE2 = 2;

private static final int INA = 0;

private static final int INB = 1;

private static final int INC = 2;

private static final int OUTA = 0;

private static final int OUTB = 1;

private static final int OUTC = 2;

private int state;

PassiveMealyMachine() {

state = STATE0;

}

private void generateEvent(int outEvent) {

// Do something

} 126

public synchronized void inputEvent(int event) {

switch (state) {

case STATE0 : switch (event) {

case INA : generateEvent(OUTA);

state = STATE1;

break;

case INB : generateEvent(OUTB);

break;

default : break;

}; break;

case STATE1 : switch (event) {

case INC : generateEvent(OUTC);

state = STATE2;

break;

default : break;

}; break;

case STATE2 : switch (event) {

case INA : generateEvent(OUTB);

state = STATE0;

break;

case INC : generateEvent(OUTC);

break;

default : break;

}; break;

}

}

}

127

Active State Machines

The state machine could also be implemented as an active
object (thread)

The thread object would typically contain an event-buffer (e.g.,
an RTEventBuffer).

The run method would consist of an infinite loop that waits for
an incoming event (RTEvent) and switches state depending on
the event.

128

Example: Active state machine 1

An activity is an action that is executed periodically while a
state is active.

More natural to implement the state machine as a thread.

129

public class ActiveMachine1 extends Thread {

private static final int STATE0 = 0;

private static final int STATE1 = 1;

private static final int STATE2 = 2;

private int state;

ActiveMachine1() {

state = STATE0;

}

private boolean cond0() {

// Returns true if condition 0 is true

}

private boolean cond1() {

}

private boolean cond2() {

}

private void action0() {

// Executes action 0

}

private void action1() {

}

private void action2() {

}
130

public void run() {

long t = System.currentTimeMillis();

long duration;

while (true) {

switch (state) {

case STATE0 : {

action0();

t = t + 20;

duration = t - System.currentTimeMillis();

if (duration > 0) {

try {

sleep(duration);

} catch (InterruptedException e) {}

}

if (cond0()) {state = STATE1;}

} break;

case STATE1 : {

// Similar as for STATE0. Executes action1, waits for 50 ms, checks

// cond1 and then changes to STATE2

}; break;

case STATE2 : {

// Similar as for STATE0. Executes action2, waits for 10 ms, checks

// cond2 and then changes to STATE0

}; break;

}

}

}

131

Comments

• Conditions tested at a frequency determined by the activity
frequencies of the different states.

• sleep() spread out in the code

132

Example: Active state machine 2

The thread runs at a constant (high) base frequency.

Activity frequencies multiples of the base frequency.

Conditions tested at the base frequency.

133

public void run() {

long t = System.currentTimeMillis();

long duration;

int counter = 0;

while (true) {

counter++;

switch (state) {

case STATE0 : {

if (counter == 4) { counter = 0; action0();

}

if (cond0()) { counter = 0; state = STATE1;

}

}; break;

case STATE1 : {

// Similar as for STATE0. Executes action1 if counter == 10. Changes to STATE2 if cond1()

}; break;

case STATE2 : {

// Similar as for STATE0. Executes action2 if counter == 12. Changes to STATE0 if cond2()

}; break;

}

t = t + 5; // Base sampling time

duration = t - System.currentTimeMillis();

if (duration > 0) {

try {

sleep(duration);

} catch (InterruptedException e) {}

}}}

134

Comments

• Polled time handling

• Complicated handling of counter

• Conditions tested at a high rate

135

