
Lecture 7: Input-Output Models

[IFAC PB pg 23-35]

• Shift operators; the pulse transfer operator

• Z-transform; the pulse transfer function

• System response

• Poles and zeros

• Transformations between system representations
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Linear System Models

State-space model Input-output models

System
u y

x

System
u y

Differential/difference Transfer
equation operator/fcn

CT
ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

dny
dtn
+ a1 dn−1ydtn−1 + ⋅ ⋅ ⋅+ any
= b1 dn−1udtn−1 + ⋅ ⋅ ⋅+ bnu

G(p) / G(s)

DT
x(k+1) = Φx(k) + Γu(k)
y(k) = Cx(k)

y(k) + a1y(k−1) + ⋅ ⋅ ⋅+
any(k−n) = b1u(k−1)

+ ⋅ ⋅ ⋅+ bnu(k−n)
H(q) / H(z)

More I-O models: pulse response, step response, frequency function, . . .
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Shift Operators

Operators on time series

Assume h = 1 (the sampling-time convention)

Time series are doubly infinite sequences:

• f (k) : k = . . .− 1, 0, 1, . . .

Forward shift operator:

• denoted q

• q f (k) = f (k+ 1)
• qn f (k) = f (k+ n)
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Shift Operators

Backward shift operator:

• denoted q−1

• q−1 f (k) = f (k− 1)
• q−n f (k) = f (k− n)
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Pulse Transfer Operator

Rewrite the state-space model using the forward shift operator:

x(k+ 1) = qx(k) = Φx(k) + Γu(k)
y(k) = Cx(k) + Du(k)

Eliminate x(k):
x(k) = (qI − Φ)−1Γu(k)
y(k) = Cx(k) + Du(k) = C(qI − Φ)−1Γu(k) + Du(k)

= [
C(qI − Φ)−1Γ + D]u(k) = H(q)u(k)

H(q) is the pulse transfer operator of the system

Describes how the input and output are related.
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Poles and Zeros (SISO case)

The pulse transfer function can be written as a rational function

H(q) = B(q)
A(q)

deg A = n = the number of states

deg B = nb ≤ n

A(q) is the characteristic polynomial of Φ, i.e.

A(q) = det(qI − Φ)

The poles of the system are given by A(q) = 0
The zeros of the system are given by B(q) = 0
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Disk Drive Example

Recall the double integrator from the previous lecture:

dx

dt
=

[
0 1

0 0

]
x +

[
0

1

]
u

y= [ 1 0 ] x

Sample with h = 1:

Φ = eAh =
[
1 1

0 1

]

Γ =
∫ h

0

eAsB ds =
[
0.5

1

]
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Disk Drive Example cont.

Pulse transfer operator:

H(q) = C(qI − Φ)−1Γ + D

= [ 1 0 ]
[
q− 1 −1
0 q− 1

]−1 [
0.5

1

]
= [ 1 0 ]
(q− 1)2

[
q− 1 1

0 q− 1

] [
0.5

1

]

= 0.5(q+ 1)(q− 1)2

Two poles in 1, one zero in −1.
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From Pulse Transfer Operator to Difference

Equation

y(k) = H(q)u(k)
A(q)y(k) = B(q)u(k)

(qn + a1qn−1 + ⋅ ⋅ ⋅ + an)y(k) = (b0qnb + ⋅ ⋅ ⋅ + bnb)u(k)

which means

y(k+ n) + a1y(k+ n− 1) + ⋅ ⋅ ⋅ + any(k)
= b0u(k+ nb) + ⋅ ⋅ ⋅ + bnbu(k)
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Difference Equation with Backward Shift

y(k+ n) + a1y(k+ n− 1) + ⋅ ⋅ ⋅ + any(k)
= b0u(k+ nb) + ⋅ ⋅ ⋅ + bnbu(k)

can be written as

y(k) + a1y(k− 1) + ⋅ ⋅ ⋅ + any(k− n)
= b0u(k− d) + ⋅ ⋅ ⋅ + bnbu(k− d− nb)

where d = n− nb is the pole excess of the system.
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The reciprocal polynomial

A∗(q) = 1+ a1q+ ⋅ ⋅ ⋅+ anqn = qnA(q−1)

is obtained from the polynomial A by reversing the order of the

coefficients.

Now the system can instead be written as

A∗(q−1)y(k) = B∗(q−1)u(k− d)
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Difference Equation Example

Using forward shift

y(k+ 2) + 2y(k+ 1) + 3y(k) = 2u(k+ 1) + u(k)

can be written

(q2 + 2q+ 3)y(k) = (2q+ 1)u(k)

Hence,

A(q) = q2 + 2q+ 3
B(q) = 2q+ 1
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Difference Equation Example, continued

Using backward shift

y(k) + 2y(k− 1) + 3y(k− 2) = 2u(k− 1) + u(k− 2)

can be written (d = 1)
(1+ 2q−1 + 3q−2)y(k) = (2+ q−1)u(k− 1)

Hence,

A∗(q−1) = 1+ 2q−1 + 3q−2
B∗(q−1) = 2+ q−1
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Z-transform

The discrete-time counterpart to the Laplace transform

Defined on semi-infinite time series f (k) : k = 0, 1, . . .

Z{ f (k)} = F(z) =
∞∑
k=0
f (k)z−k

z is a complex variable
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Example — Discrete-Time Step Signal

Let y(k) = 1 for k ≥ 0. Then

Y(z) = 1+ z−1 + z−2 + ⋅ ⋅ ⋅ = z

z− 1, �z� > 1

Application of the following result for power series

∞∑
k=0
xk = 1

1− x for �x� < 1
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Example — Discrete-Time Ramp Signal

Let y(k) = k for k ≥ 0. Then

Y(z) = 0+ z−1 + 2z−2 + 3z−3 ⋅ ⋅ ⋅ = z

(z− 1)2

Application of the following result for power series

∞∑
k=0
kxk = x

(1− x)2 for �x� < 1
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Z-transform Table

Table 2 (pg 26) in IFAC PB (ignore the middle column!)

f L f Z f

δ (k) (pulse) – 1

1 k ≥ 0 (step)
1

s

z

z− 1

kh
1

s2
hz

(z− 1)2

1

2
(kh)2 1

s3
h2z(z+ 1)
2(z− 1)3

e−kh/T
T

1+ sT
z

z− e−h/T

1− e−kh/T 1

s(1+ sT)
z(1− e−h/T )

(z− 1)(z− e−h/T )

sinω kh
ω

s2 +ω 2
zsinωh

z2 − 2zcosωh+ 1 17

Some Properties of the Z-transform

Z(α f + β�) = α F(z) + βG(z)

Z(q−n f ) = z−nF(z)

Z(q f ) = z(F(z) − f (0))

Z( f ∗ �) =Z
⎧⎨
⎩

k∑
j=0
f ( j)�(k− j)

⎫⎬
⎭ = F(z)G(z)
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From State Space to Pulse Transfer Function

{
x(k+ 1) = Φx(k) + Γu(k)
y(k) = Cx(k) + Du(k)

{
z(X (z) − x(0)) = ΦX (z) + ΓU(z)
Y(z) = CX (z) + DU(z)

Y(z) = C(zI − Φ)−1z x(0) + [C(zI − Φ)−1Γ + D]U(z)

The rational function H(z) = C(zI − Φ)−1Γ + D is called the

pulse transfer function from u to y.

It is the Z-transform of the pulse response.
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H(q) vs H(z)
The pulse transfer operator H(q) and the pulse transfer

function H(z) are the same rational functions

They have the same poles and zeros

H(q) is used in the time domain (q = shift operator)

H(z) is used in the Z-domain (z = complex variable)
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Calculating System Response Using the

Z-transform

1. Find the pulse transfer function H(z) = C(zI − Φ)−1Γ + D
2. Compute the Z-transform of the input: U(z) =Z{u(k)}
3. Compute the Z-transform of the output:

Y(z) = C(zI − Φ)−1z x(0) + H(z)U(z)

4. Apply the inverse Z-transform (table) to find the output:

y(k) =Z−1{Y(z)}
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Frequency Response in Continuous Time
y

u

Given a stable system G(s), the input u(t) = sinω t will, after a

transient, give the output

y(t) = �G(iω )� sin
(

ω t+ argG(iω )
)

• The amplitude and phase shift for different frequencies are

given by the value of G(s) along the imaginary axes, i.e.

G(iω )
• Plotted in Bode and Nyquist diagrams.
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Frequency Response in Discrete Time
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Given a stable system H(z), the input u(k) = sin(ω k) will,

after a transient, give the output

y(k) = �H(eiω )� sin
(

ω k+ arg H(eiω )
)

• G(s) and the imaginary axis are replaced by H(z) and the

unit circle.

• Only describes what happens at the sampling instants

• The inter-sample behavior is not studied in this course
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Bode diagram for continuous transfer function 1/(s2+1.4s+1) (solid)
and for ZOH-sampled counterpart (dashed, plotted for ωh ∈ [0,π ])
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For slow signals, the hold circuit is approximately a h/2 delay.

For fast signals, the hold circuit destroys the sinusoidal shape.
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Nyquist diagram for cont. transfer function 1/(s2 + 1.4s + 1) (solid)
and for ZOH-sampled counterpart (dashed, plotted for ωh ∈ [0,π ])
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Interpretation of Poles and Zeros

Poles:

• A pole z = a is associated with the time function f (k) = ak

Zeros:

• A zero z = a implies that the transmission of the input

u(k) = ak is blocked by the system

• Related to how inputs and outputs are coupled to the

states
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Transformation of Poles via Sampling: zi = esih
ωN

−ω N

−ω N

−ω N

ωN

ωN

s z
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New Evidence of the Alias Problem

Several points in the s-plane are mapped into the same point

in the z-plane. The map is not bijective

x

x

x

p

3π / h

π / h

    −3π / h

    − π / h
    S0

x x

x

p1

    p1

    p2

    p2
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Sampling of a Second Order System

G(s) = ω 20
s2 + 2ζ ω 0s+ω 20

, �ζ � < 1

Im

Re

ϕ

ω 0

• Larger ω 0 � faster system response

• Smaller ϕ � larger damping (relative damping ζ = cosϕ ).
(Common design choice: ζ = cos 45○ 
 0.7)
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Sampling of a Second Order System

The poles of the sampled system are given by

z2 + a1z+ a2 = 0

where

a1 = −2e−ζ ω 0h cos
(√
1− ζ 2ω 0h

)
a2 = e−2ζ ω 0h
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Transformation of Zeros via Sampling

• More complicated than for poles

• Extra zeros may appear in the sampled system

• There can be zeros outside the unit circle (non-minimum

phase) even if the continuous system has all the zeros in

the left half plane

• For short sampling periods

zi 
 esih

33

Calculation of H(z) Given G(s)
Three approaches:

1. Make state-space realization of G(s). Sample to get Φ and

Γ. Then H(z) = C(zI − Φ)−1Γ + D.

2. Directly using the formula

Hzoh(z) = z− 1
z

1

2π i

∫ γ +i∞

γ −i∞

esh

z− esh
G(s)
s
ds

=
∑
s=si

1

z− esh Res
{
esh − 1
s

G(s)
}

• si are the poles of G(s) and Res denotes the residue.

• outside the scope of the course
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3. Use Table 3 (pg 28) in IFAC PB

G(s) H(z) = b1z
n−1 + b2zn−2 + ⋅ ⋅ ⋅+ bn
zn + a1zn−1 + ⋅ ⋅ ⋅+ an

1

s

h

z− 1

1

s2
h2(z+ 1)
2(z− 1)2

e−sh z−1

a

s+ a
1− exp(−ah)
z− exp(−ah)

a

s(s+ a)
b1 =

1

a
(ah− 1+ e−ah) b2 =

1

a
(1− e−ah − ahe−ah)

a1 = −(1+ e−ah) a2 = e−ah

a2

(s+ a)2
b1 = 1− e−ah(1+ ah) b2 = e−ah(e−ah + ah− 1)

a1 = −2e−ah a2 = e−2ah
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Calculation of H(z) Given G(s)
Example: For G(s) = e−τ s/s2, the previous lecture gave

x(kh+ h) = Φx(kh) + Γ1u(kh− h) + Γ0u(kh)

Φ =
⎧⎪⎪⎩ 1 h

0 1

⎫⎪⎪⎭ Γ1 =
⎧⎪⎪⎪⎩τ

(
h− τ

2

)
τ

⎫⎪⎪⎪⎭ Γ0 =
⎧⎪⎪⎪⎪⎪⎩
(h− τ )2
2
h− τ

⎫⎪⎪⎪⎪⎪⎭
With h = 1 and τ = 0.5, this gives

H(z) = C(zI − Φ)−1(Γ0 + Γ1z
−1) = 0.125(z

2 + 6z+ 1)
z(z2 − 2z+ 1)

Order: 3

Poles: 0, 1, and 1
Zeros: −3±√8
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Examples in Matlab

>> Phi = [0.5 -0.2; 0 0];

>> Gamma = [2; 1];

>> C = [1 0];

>> D = 0;

>> h = 1;

>> H = ss(Phi, Gamma, C, D, h);

>> zpk(H)

>> % From cont-time transfer function to discrete-time

>> % pulse transfer function

>> s = zpk(’s’);

>> G = 1/s^3;

>> H = c2d(G,h)

>> % Another way

>> G = tf([1],[1 3 2 0]);

>> G = ss(G);

>> H = c2d(G,h);

>> tf(H) 37


