Course Summary Real-Time Systems

2013

Remaining Lectures

- Thursday 12 Dec 15:15-17:00
 - Demo lecture
 - We meet in M:B first, then to the Lab
- Thursday 12 Dec 17:15-19:00
 - Oral presentations
 - 10-15 minutes / group
 - Projectors will be available
 - 5 parallel sessions with 5-6 groups per session
 - More information later on the home page

Exams

- Tuesday 17 Dec, 8-13, Victoria
- Tuesday 7 Jan, 14-19, MA:10
- Wednesday 23 Apr 8-13, M:Q

Handout Material

- Slide copies
- Formula sheet 2010
 Can be used at the exam
- Course requirements 2013

The most important parts! or with some luck What you need to know to pass the exam

Lecture 1: Real-Time Systems

- Basic definitions (hard, soft, ...)
- Timing parameters in continuous controllers (sampling latency, sampling interval, input-output latency)
- Different event types (periodic, aperiodic, sporadic)

Lecture 2: Concurrent Programming

- Process vs threads
- · Process' internal states and state transitions
- The ReadyQueue
- Context switches

 Save, restore
 The role of the stackpointer
- Process representation
- The Schedule procedure in Stork
- Java threads:
- Extend Thread versus implement Runnable
 - Thread priorities

Lecture 3: Communication Pt 1

- Non-reentrant code
- Race conditions
- Mutual exclusion
- · Semaphores:
 - Use for mutual exclusion and synchronization
 - Logical semantics
 - Different types of semaphores (counting, binary)
 - Basic version vs alternative version
 - Stork implementation
 - Condition synchronization using semaphores
 - Java Class Semaphore

- Monitors:
 - Basic definitions
 - Condition variables
 - Monitors in Stork
 - Implementation
- Synchronization in Java
 - Synchronized methods
 - Synchronized blocks
 - Instance locks vs class locks
 - Condition synchronization in Java
 - Class ConditionVariable
- Producer-Consumer example
 - Using semaphores
 - Using synchronization
- · Passing objects between threads

Lecture 4: Communication Pt 2

- Deadlock
 - Necessary conditions
 - Deadlock handling (prevention, avoidance, detection & recovery)
 - Hierarchical resource allocation
- Priority inversion
 - When does it occur?
 - Basic priority inheritancePriority Ceiling
 - Priority Cening
 Immediate inheritance
- Message passing
 - Alternative schemes (asynchronous/synchronous, direct/indirect)

Lecture 5: Interrupts and Time

- · Interrupts and interrupt handling
- Clock interrupts
 - The actions performed in the clock interrupt handler
 TimeQueue
 - Tick-based vs event-based clock interrupts
- Foreground-background schedulers
- Time primitives (relative vs absolute)
- Implementation of periodic controller tasks:
- Implementation of periodic controller tasks
 Different alternatives and their problems
- Minimizing the input-output latency

 CalculateOutput and UpdateState
- Cascaded controllers
- Jitter

Lecture 6: Sampling of Systems

- · Sample and Hold
- · Effects of sampling
- Aliasing
- · ZOH sampling
- · ZOH sampling of systems with input delays
- Calculating Φ and Γ
- · Solution of system equations
- · Stability regions
- Convolution
- · From difference equations to state-space

Lecture 7: Z-transform, poles and zeros

- Shift operators and z-transform
- Pulse transfer operator and Pulse transfer function
- Poles and zeros
- · Input-output models
- Frequency response
- Transformation of poles
- Calculation of H(z)

Lecture 8: From Analog to Digital

- Different approximation methods
- Prewarping
- PID control
 - Textbook algorithm (P, I, and D part)
 Absolute versus incremental form
 - Absolute versus increme
 Algorithm modifications
 - Algorithm mounications
 Setpoint weighting
 - Limitation of derivative gain
 - Derivative weighting
 Windup and anti-windup
 - Windup and anti-wind
 Tracking
 - Bumpless mode and parameter changes
 - Discretization
 - Code

Lecture 9: State Feedback

- State feedback
- Deadbeat
- Observers
 - Prediction form
 - Filter form (with direct term)
- Disturbance estimation & integral action

Error

- Error in the handout slides and in IFAC Professsional Brief
- The observer example for the double integrator

The Gamma*u(k) term is forgotten

$$\begin{split} \dot{x}_1(k+1) &= \dot{x}_1(k) + h \dot{x}_2(k) + 2 \Big(y(k) - \dot{x}_1(k) \Big) \\ \dot{x}_2(k+1) &= \dot{x}_2(k) + \frac{1}{h} \left(y(k) - \dot{x}_1(k) \right) \end{split}$$

Lecture 10: Reference Generation

- Reference generation:
 - Transfer function approach
 - State-space approach
 - Nonlinear reference generation

Lecture 11: Implementation Aspects

• Sampling & Aliasing

Resulting observer

- · Choice of sampling interval
- · Computational delay
- A-D and D-A quantization
- Pulse width modulation
- · Fixed-point arithmetic
 - Q format
 - Two's complement representation
 - Fixed point operations (+, -, *, /) including C code
 - OverflowSensitivity towards coefficient roundoff

Lecture 11: Scheduling

- Execution time analysis

 Measurements vs analysis
 Basic problems
- CPU utilization
- Critical instant
- Static cyclic scheduling

 Basic ideas
- Earliest Deadline First Scheduling

 Draw diagrams
 - Sufficient schedulability condition
 - Overrun behaviour

• Fixed Priority Scheduling:

- Priority assignment (rate monotonic, deadline monotonic)
- Rate monotonic analysis
 - Approximate analysis (two formulas !!)
 - 69% rule of thumb
 - Exact analysis

 Response-time calculations
- Response-time calcu
 Draw schedules
- Draw schedules
 Overrun behaviour
- NOT:
 - Scheduling of aperiodic tasks
 - Alternative scheduling models

Lecture 14: Discrete Control

- State machines
- Statecharts
- Grafcet
 - Firing rules
 - Action types
 - Be able to use Grafcet in problems and examples
- Petri Nets
 - Firing rules
 - Generalized PNs
 - Dijkstra's problems
- Coding state machines in Java

Lecture 15: Integrated Control and Scheduling

- Input-output latency
 Delay margin
- Why is jitter bad?
- Know the basic idea of the Jitter Margin (not the theory)
- TrueTime and Jitterbug – What can they do and how are they used?

Lecture 16: Real-Time Networks

- The OSI protocol (stack) model
- Shortcomings of the OSI/IP stack for realtime communication
- CAN protocol
 - Basic notions and arbitration mechanism
- TTP
 - Basic notions

The projects

- The use of Java in real-time programming
- The program structure from Lab 1
- Problems and solutions
- Priorities, synchronization,

Typical Exam Problems

- PID implementation
- Discretization of Continuous Designs
- Synchronization (semaphores, monitors, deadlock)
- Scheduling
- Grafcet / Petri Nets
- ZOH sampling
- Input-output models
- State feedback / observers / reference signals
- Fixed point arithmetic

Open Book Exam

- You may use the two text books during the exam
- You may not use the Exercise book
- You may not use the slide copies
- No extra notes in the text books
- Problems were the solution can be directly taken from the text books will not be given

Courses in Spring 2013

- VT LP1
 - Nonlinear Control
 - System Identification
 - Reglerteori
 - -International Project Course in Control
- VT LP2
 - Project Course in Control
 - Market Driven Control Systems

Courses 2014/2015 →

- HT LP1
 - Multivariable
 - System Identification
- HT LP2
 - NonlinearProject in Automatic Control
- VT LP1
- Real-Time Systems (1+2)
 Predictive Control (1+2)
- VT LP2
 - Market-Driven Systems
- Network Dynamics (new course)