
Lecture 9: State Feedback and Observers

[IFAC PB Ch 9]

• State Feedback

• Observers

• Disturbance Estimation
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Control Design

Many factors to consider, for example:

• Attenuation of load disturbances

• Reduction of the effect of measurement noise

• Command signal following

• Variations and uncertainties in process behavior
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Two Classes of Control Problems

Regulation problems: compromise between rejection of load
disturbances and injection of measurement noise

• Lecture 9

Servo problems: make the output respond to command
signals in the desired way

• Lecture 10
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State Feedback: Problem Formulation

x u y

−L Process

• Discrete-time process model

x(k+ 1) = Φx(k) + Γu(k)

• Linear feedback from all state variables

u(k) = −Lx(k)

• Disturbances modelled by nonzero initial state x(0) = x0

• Goal: Control the state to the origin, using a reasonable
control signal
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Closed-Loop System

The state equation

x(k+ 1) = Φx(k) + Γu(k)

with the control law

u(k) = −Lx(k)

gives the closed-loop system

x(k+ 1) = (Φ − ΓL) x(k)

Pole placement design: Choose L to obtain the desired
characteristic equation

det(zI − Φ + ΓL) = 0

(Matlab: place or acker) 5



Example – Double Integrator

x(k+ 1) =









1 h

0 1








x(k) +









h2/2

h








u(k)

Linear state-feedback controller

u(k) = −Lx(k) = −l1x1(k) − l2x2(k)

The closed-loop system becomes

x(k+ 1) = (Φ − ΓL)x(k)

=









1− l1h
2/2 h− l2h

2/2

−l1h 1− l2h








x(k)

Characteristic equation

z2 +

(

l1h
2

2
+ l2h− 2

)

z+

(

l1h
2

2
− l2h+ 1

)

= 0
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Example Cont’d

Characteristic equation

z2 +

(

l1h
2

2
+ l2h− 2

)

z+

(

l1h
2

2
− l2h+ 1

)

= 0

Assume desired characteristic equation z2 + a1z+ a2 = 0.

Linear equations for l1 and l2

l1h
2

2
+ l2h− 2 = a1

l1h
2

2
− l2h+ 1 = a2
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Example Cont’d

Solution:

l1 =
1

h2
(1+ a1 + a2)

l2 =
1

2h
(3+ a1 − a2)

• L depends on h
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Where to Place the Poles?

Recall from Lecture 7:

Loci of constant ζ (solid) and ωh (dashed) when

ω 2

s2 + 2ζ ω s+ω 2

is sampled:
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Example – Choice of Design Parameters

Double integrator, xT0 = [ 1 1 ], ωh = 0.44, ζ = 0.707

(b) ω = 0.5 (dash-dotted), (c) ω = 1 (dashed), (d) ω = 2 (solid)

10



Deadbeat Control — Only in Discrete Time

Choose P(z) = zn [ h only remaining design parameter

Drives all states to zero in at most n steps after an impulse
disturbance in the states (can be very aggressive for small h!)

Finite time as opposed to infinite time in continuous time.

Example: Double integrator, xT0 = [ 1 1 ]
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Controllability

The eigenvalues of Φ − ΓL can be assigned to arbitrary
positions if and only if the system is controllable, i.e. if the
controllability matrix

Wc =


 Γ ΦΓ . . . Φn−1Γ




has full rank.

In practice, moving some eigenvalues could require high gain
and lead to bad controllers.
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State Feedback in Controllable Form

We previously derived the controllable canonical form

x(k+ 1) =

2

6

6

6

6

4

−a1 −a2 . . . −an

1 0 . . . 0

. . .
...

1 0

3

7

7

7

7

5

x(k) +

2

6

6

6

6

4

1

0

...

0

3

7

7

7

7

5

u(k)

In this case, application of the state feedback

u = −l1x1 − ⋅ ⋅ ⋅− lnxn

changes the coefficients a1, . . . ,an to a1 + l1, . . . ,an + ln, so the
characteristic polynomial changes to

zn + (a1 + l1)z
n−1 + ⋅ ⋅ ⋅+ (an−1 + ln−1)z+ an + ln

Design method: Transform to controllable canonical form, apply state
feedback, transform the controller back again – Ackermann’s formula
(see IFAC PB)
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State Feedback with Integral Action

Integral action can be introduced by augmenting the plant
model with an extra state variable, xi, that integrates the plant
output:

xi(k+ 1) = xi(k) + y(k) = xi(k) + Cx(k)

The augmented open-loop system becomes






x(k+ 1)

xi(k+ 1)





 =







Φ 0

C I













x(k)

xi(k)





+







Γ

0





u(k)

We can then design a state feedback controller

u(k) = −


 L Li











x(k)

xi(k)







using the same techniques as before

(Integral action can also be introduced using a disturbance
observer, as we will see later)
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Reconstruction

What should you do if you can not measure the full state
vector or if you have noisy measurements?
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Reconstruction Through Direct Calculations

Basic idea: Reconstruct the state vector through direct calcula-
tions using the input and output sequences y(k), y(k − 1), . . .,
u(k), u(k − l), . . . together with the state-space model of the
plant.

Explained in detail in IFAC PB pg 61–62

Make sure that you understand it (a lot of notation but not
difficult!)

Often sensitive to disturbances.

A better alternative is to use the model information explicitly.
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Reconstruction Using An Observer

x̂

u y

Observer

Process

Simulated process model:

x̂(k+ 1) = Φ x̂(k) + Γu(k)

ŷ(k) = Cx̂(k)

Introduce "feedback" from measured y(k)

x̂(k+ 1) = Φ x̂(k) + Γu(k) + K
(

y(k) − Cx̂(k)
)
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Form the estimation error x̃ = x − x̂

x̃(k+ 1) = Φ x̃(k) − KCx̃(k)

= [Φ − KC]x̃(k)

• Any observer poles possible, provided the observability
matrix

Wo =

















C
...

CΦn−1

















has full rank

• Choose K to get good convergence

• Trade-off against measurement noise amplification
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Deadbeat Observer

A deadbeat observer is obtained if the observer gain K is
chosen so that the matrix Φ − KC has all eigenvalues zero.

The observer error goes to zero in finite time (in at most n
steps, where n is the order of the system)

Noise sensitive (fast observer dynamics)

Equivalent to reconstruction using direct calculations.
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Observer for the Double Integrator

Φ − KC =









1 h

0 1








−









k1

k2











 1 0



 =









1− k1 h

−k2 1









Characteristic equation

z2 − (2− k1)z+ 1− k1 + k2h = 0

Desired characteristic equation:

z2 + p1z+ p2 = 0

Gives:

2− k1 = −p1

1− k1 + k2h = p2
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Observer for the Double Integrator cont’d

Solution:

k1 = 2+ p1

k2 = (1+ p1 + p2)/h

Assume deadbeat observer (p1 = p2 = 0)

k1 = 2

k2 = 1/h

Resulting observer

x̂1(k+ 1) = x̂1(k) + hx̂2(k) + 2
(

y(k) − x̂1(k)
)

x̂2(k+ 1) = x̂2(k) +
1

h

(

y(k) − x̂1(k)
)
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An Alternative Observer

The observer presented so far has a one sample delay:
x̂(k p k− 1) depends only on measurements up to time k− 1

Alternative observer with direct term:

x̂(k p k) = Φ x̂(k− 1 p k− 1) + Γu(k− 1)

+ K
[

y(k) − C
(

Φ x̂(k− 1 p k− 1) + Γu(k− 1)
)]

= (I − KC)
(

Φ x̂(k− 1 p k− 1) + Γu(k− 1)
)

+ K y(k)

Reconstruction error:

x̃(k p k) = x(k) − x̂(k p k) = (Φ − KCΦ) x̃(k− 1 p k− 1)

• Φ − KCΦ can be given arbitrary eigenvalues if Φ − KC can

• K may be chosen so that some of the states will be observed
directly through y[ the order of the observer can be reduced

– Reduced order observer or Luenberger observer 22



Output Feedback

State feedback from observed state:

Controller:

x̂(k+ 1) = Φ x̂(k) + Γu(k) + K (y(k) − Cx̂(k))

u(k) = −Lx̂(k)

Transfer function from y to u: −L(zI − Φ + ΓL + KC)−1K

23



Analysis of the Closed-Loop System

x(k+ 1) = Φx(k) + Γu(k)

x̃(k+ 1) = (Φ − KC)x̃(k)

u(k) = −Lx̂(k) = −L(x(k) − x̃(k))

Eliminate u(k)








x(k+ 1)

x̃(k+ 1)








=









Φ − ΓL ΓL

0 Φ − KC

















x(k)

x̃(k)









Separation

Control poles: Ac(z) = det(zI − Φ + ΓL)

Observer poles: Ao(z) = det(zI − Φ + KC)
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Disturbance Estimation

How to handle disturbances that can not be modeled as
impulse disturbances in the process state?

Assume that the process is described by

dx

dt
= Ax + Bu+ v

y= Cx

where v is a disturbance modeled as

dw

dt
= Aww

v = Cww

Since disturbances typically have most of their energy at low
frequencies, the eigenvalues of Aw are typically in the origin or
on the imaginary axis (sinusoidal disturbance)
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Disturbance Estimation

Augment the state vector:






x

w







Gives the augmented system

d

dt









x

w








=









A Cw

0 Aw

















x

w








+









B

0








u

y=


C 0













x

w









which is sampled into








x(k+ 1)

w(k+ 1)








=









Φ Φxw

0 Φw

















x(k)

w(k)








+









Γ

0








u(k)

y=


C 0













x(k)

w(k)
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Augmented Observer and State Feedback

Augmented observer:








x̂(k+ 1)

ŵ(k+ 1)








=









Φ Φxw

0 Φw

















x̂(k)

ŵ(k)








+









Γ

0








u(k) +









K

Kw








ǫ(k)

with ǫ(k) = y(k) − Cx̂(k)

Augmented state feedback control law:

u(k) = −Lx̂(k) − Lwŵ(k)

If possible, select Lw such that Φxw − ΓLw = 0
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Disturbance Estimation: Block Diagram
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Disturbance Estimation: Closed-Loop System

The closed-loop system can be written

x(k+ 1) = (Φ − ΓL)x(k) + (Φxw − ΓLw)w+ ΓLx̃(k) + ΓLww̃

w(k+ 1) = Φww(k)

x̃(k+ 1) = (Φ − KC)x̃(k) + Φxww̃(k)

w̃(k+ 1) = Φww̃(k) − KwCx̃(k)

• L ensures that x goes to zero at the desired rate after a
disturbance.

• The gain Lw reduces the effect of the disturbance v on the
system by feedforward from the estimated disturbances ŵ.

• K and Kw influence the rate at which the estimation errors go
to zero.
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Special Case: Constant Input Disturbance

Assume constant disturbance acting on the plant input:

• v = w

• Φw = 1

• Φxw = Γ

If we choose Lw = 1 we will have perfect cancellation of the
load disturbance

New controller + estimator

u(k) = −Lx̂(k) − v̂(k)

x̂(k+ 1) = Φ x̂(k) + Γ
(

v̂(k) + u(k)
)

+ K ǫ(k)

v̂(k+ 1) = v̂(k) + Kwǫ(k)

ǫ(k) = y(k) − Cx̂(k)
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Special Case: Block Diagram

The disturbance estimator is integrating the prediction error of
the observer.

The overall controller will have integral action (see IFAC PB)
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Example – Design

• Control of double integrator

dx

dt
=









0 1

0 0








x +









0

1








u

y=


 1 0



 x

• Sample with h = 0.44

• Discrete state feedback designed based on continuous-
time specification ω = 1, ζ = 0.7

– Gives L = [0.73 1.21]

• Extended observer assuming constant input disturbance to
obtain integral action; all three poles placed in z = 0.75.
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Example – Simulation
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Optimization-Based Design

Pole-placement design:

• L and K derived through pole-placement

In the course Multivariable Control (Flervariabel Reglering),
L and K are instead derived through optimization

• LQ (Linear Quadratic) and LQG (Linear Quadratic Gaus-
sian) control

• Short overview in Ch 11 of IFAC PB

• Not part of this course

34



Examples in Matlab

>> A = [0 1; 0 0];

>> B = [0; 1];

>> h = 0.44;

>> % Sampled system matrices

>> [Phi,Gamma] = c2d(A,B,h)

>> % Desired poles in continuous time

>> omega = 1; zeta = 0.7;

>> pc = roots([1 2*zeta*omega omega^2])

>> % Corresponding desired discrete poles

>> pd = exp(pc*h)

>> % Design state feedback

>> L = place(Phi,Gamma,pd)

>> % Design augmented observer

>> Phie = [Phi Gamma; zeros(1,2) 1];

>> Ce = [C 0];

>> Ke = acker(Phie’,Ce’,[0.75 0.75 0.75])’ 35


