
Lecture 8: From Analog to Digital Controllers,

PID Control

[IFAC PB Ch 6, Ch 8, RTCS Ch 10]

• Discrete-time approximation of continuous-time controllers

– State-space domain

– Frequency domain

• The PID Controller
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Design Approaches

Control Design in Continuous Time 

Discretized Controller

Difference Equation

Software Algorithm

Continuous−Time Process Model

Discretized Process Model

Control Design in Discrete Time

Lectures 6,7,9
Lecture 8
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Implementing a Continuous-Time Controller

Using a Computer

Algorithm

Clock

  
u kh( ){ }   

y kh( ){ }

  H(z) ≈ G (s)

  y(t)u(t)
A-D D-A

Want to find discrete-time Algorithm such that

A-D + Algorithm + D-A ( Continuous Controller
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Methods:

• Differentiation and Tustin approximations

– State-space domain

– Frequency domain

• Step invariance (ZOH)

• Ramp invariance (FOH)

• Pole-zero matching

(Tustin and the three last methods are available in Matlab’s c2d command)
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Differentiation and Tustin Approximations

Forward difference (Euler’s method):

dx(t)
dt

( x(t+ h) − x(t)
h

= q− 1
h
x(t)

Backward difference:

dx(t)
dt

( x(t) − x(t− h)
h

= q− 1
qh

x(t)

Tustin’s approximation (trapezoidal method, bilinear transforma-

tion):

ẋ(t+ h) + ẋ(t)
2

( x(t+ h) − x(t)
h
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State-Space Domain

Assume that the controller is given in state-space form

dx

dt
= Ax + Bu

y= Cx + Du

where x is the controller state, y is the controller output, and u
is the controller input.

Forward or backward approximation of the derivative
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Forward difference

dx(t)
dt

( x(k+ 1) − x(k)
h

leads to

x(k+ 1) − x(k)
h

= Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k)

which gives

x(k+ 1) = (I + hA)x(k) + hBu(k)
y(k) = Cx(k) + Du(k)
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Backward difference

dx(t)
dt

( x(k) − x(k− 1)
h

first gives

x(k) = (I − hA)−1x(k− h) + (I − hA)−1hBu(k)
y(k) = Cx(k) + Du(k)

which after a variable shift x′(k) = x(k− h) gives

x′(k+ 1) = (I − hA)−1x′(k) + (I − hA)−1hBu(k)
y(k) = C(I − hA)−1x′(k) + (C(I − hA)−1hB + D)u(k)
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Frequency Domain

Assume that the controller is given as a transfer function G(s)

The discrete-time approximation H(z) is given by

H(z) = G(s′)

where

s′ = z− 1
h

Forward difference

s′ = z− 1
zh

Backward difference

s′ = 2
h

z− 1
z+ 1 Tustin’s approximation
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Example: Discretization

Assume that the following simple controller (filter) has been

designed in continuous-time:

U(s) = 1

s+ 2E(s)

Discretize this controller using Forward Euler approximation,

i.e. replace s with z−1
h

:

U(z) = 1
z−1
h
+ 2
E(z)

U(z) = h

z− 1+ 2h E(z)

(z− 1+ 2h)U(z) = hE(z)
u(k+ 1) − (1− 2h)u(k) = he(k)

u(k) = (1− 2h)u(k− 1) + he(k− 1)
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Alternative: Write as differential equation first:

du

dt
+ 2u(t) = e(t)

u(k+ 1) − u(k)
h

+ 2u(k) = e(k)

u(k+ 1) − u(k) + 2hu(k) = he(k)
u(k) = (1− 2h)u(k− 1) + he(k− 1)

Simulation

(h = 0.1):

Step Response
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Properties of the Approximation H(z) ( G(s)
Where do stable poles of G(s) get mapped?

Forward differences Backward differences Tustin
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Frequency Distortion

Simple approximations such as Tustin introduce frequency

distortion.

Important for controllers or filters designed to have certain

characteristics at a particular frequency, e.g., a band-pass filter

or a notch (band-stop) filter.

Tustin:

H(eiωh) ( G
(

2

h

eiωh − 1
eiωh + 1

)

The argument of G can be written as

2

h

eiωh − 1
eiωh + 1 =

2

h

eiωh/2 − e−iωh/2
eiωh/2 + e−iωh/2 =

2i

h
tan

(

ωh

2

)
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Frequency Distortion, Cont’d

If the continuous-time system affects signals at frequency ω ′,
the sampled system will instead affect signals at ω where

ω ′ = 2
h
tan

(

ωh

2

)

i.e.,

ω = 2
h
tan−1

(

ω ′h

2

)

( ω ′
(

1− (ω
′h)2
12

)

No distortion at ω = 0
Distortion is small if ωh is small
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Prewarping to Reduce Frequency Distortion

Approximation

s z

  iω ′

−iω ′

e iω ′

e −iω ′

Choose one point ω 1. Approximate using

s′ = ω 1
tan(ω 1h/2)

⋅
z− 1
z+ 1

This implies that H
(

eiω1h
)

= G(iω 1). Plain Tustin is obtained

for ω 1 = 0 since tan
(

ω1h
2

)

( ω1h
2

for small ω .
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Comparison of Approximations (1)

G(s) = (s+ 1)2(s2 + 2s+ 400)
(s+ 5)2(s2 + 2s+ 100)(s2 + 3s+ 2500) , h = 0.03

Bode Diagram
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Comparison of Approximations (2)

Bode Diagram

Frequency (rad/sec)

P
h
a
s
e
 (

d
e
g
)

M
a
g
n
it
u
d
e
 (

a
b
s
)

10
−5

10
−4

10
−3

10
−2

G(s)
H

tustin
(z)

H
prewarp(50)

(z)

10
0

10
1

10
2

10
3

−180

−135

−90

−45

0

45

90

17



Sample and Hold-Based Approximations

Sample the controller in the same way as the physical plant

model is sampled

• Zero-order hold or Step invariance method

• First-order hold or Ramp invariance method

For a controller, the assumption that the input is piece-wise

constant (ZOH) or piece-wise linear (FOH) does not hold!

However, the ramp invariance method normally gives good

results with little frequency distortion
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Comparison of Approximations (3)

Bode Diagram
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Matlab

SYSD = C2D(SYSC,TS,METHOD) converts the continuous

system SYSC to a discrete-time system SYSD with

sample time TS. The string METHOD selects the

discretization method among the following:

’zoh’ Zero-order hold on the inputs.

’foh’ Linear interpolation of inputs

(triangle appx.)

’tustin’ Bilinear (Tustin) approximation.

’prewarp’ Tustin approximation with frequency

prewarping.

The critical frequency Wc is specified

last as in C2D(SysC,Ts,’prewarp’,Wc)

’matched’ Matched pole-zero method

(for SISO systems only).
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Design Approaches: Which Way?

Control Design in Continuous Time 

Discretized Controller

Difference Equation

Software Algorithm

Continuous−Time Process Model

Discretized Process Model

Control Design in Discrete Time

Lectures 6,7,9
Lecture 8

Sampled-Control Design:

• When the plant model is already on discrete-time form

– obtained from system identification

• When the control design assumes a discrete-time model

– e.g., model-predictive control

• When fast sampling not possible
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Design Approaches: Which Way?

Control Design in Continuous Time 

Discretized Controller

Difference Equation

Software Algorithm

Continuous−Time Process Model

Discretized Process Model

Control Design in Discrete Time

Lectures 6,7,9
Lecture 8

Discretization of Continuous Design:

• Empirical control design

– not model-based

– e.g., PID control

• Nonlinear continuous-time model

In most other cases it is mainly a matter of taste.
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An Example: PID Control

• The oldest controller type

• The most widely used

– Pulp & Paper 86%

– Steel 93%

– Oil refineries 93%

• Much to learn!
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The Textbook Algorithm

u(t) = K
(

e(t) + 1
Ti

∫ t

0
e(τ )dτ + Td

de(t)
dt

)

U(s) = KE(s) + K

sTi
E(s) + KTdsE(s)

= P + I + D
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Proportional Term

umax

umin

u

e
0

e– e
0

u
0

Proportional band

u =















umax e > e0
K e+ u0 − e0 < e < e0
umin e < −e0
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Properties of P-Control
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• Stationary error

• Increased K means faster speed, worse stability,

increased noise sensitivity
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Error with P-control

Control signal:

u = K e+ u0

Error:

e = u− u0
K

Error removed if:

1. K = ∞
2. u0 = u

Solution: Automatic way to obtain u0
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Integral Term

u = K e+ u0 (P)

u = K
(

e+ 1
Ti

∫

e(t)dt
)

(PI)

e

t

–

+

Stationary error present →
∫

edt increases → u increases →
y increases → the error is not stationary
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Automatic Reset

1+sT i

1

Σ
uK e

u0

U = KE + 1

1+ sTi
U

(

1− 1

1+ sTi

)

U = sTi

1+ sTi
U = KE

U = K
(

1+ 1

sTi

)

E
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Properties of PI-Control

0 5 10 15 20

0

0.5

1

1.5

Set point and measured variable

0 5 10 15 20

0

1

2

Control variable

Ti=1
Ti=2

Ti=5

Ti=∞

Ti=1

Ti=2

Ti=5

Ti=∞

• Removes stationary error

• Smaller Ti implies faster steady-state error removal,

worse stability
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Prediction

A PI-controller contains no prediction

The same control signal is obtained for both these cases:

e

t Time

I

P

e

t Time

I

P
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Derivative Part

Error

e(t)
e(t + Td)

e(t) + Td
de(t)

dt

Time

P:

u(t) = K e(t)

PD:

u(t) = K
(

e(t) + Td
de(t)
dt

)

( K e(t+ Td)

Td = Prediction horizon
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Properties of PD-Control
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• Td too small, no influence

• Td too large, decreased performance

In industrial practice the D-term is often turned off. 33



Alternative Forms

So far we have described the direct (position) version of the

PID controller on parallel form

Other forms:

• Series form

U = K ′(1+ 1

sT ′i
)(1+ sT ′d)E

= K ′(1+ T
′
d

T ′i
+ 1

sT ′i
+ sT ′d)E

Different parameter values
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• Incremental (velocity) form

U = 1
s

∆U

∆U = K (s+ 1
Ti
+ s2Td

1+ sTd/N
)E

Integration external to the algorithm (e.g. step motor) or

internal
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Practical Modifications

Modifications are needed to make the PID controller practically

useful

• Limitations of derivative gain

• Derivative weighting

• Setpoint weighting

• Handle control signal limitations
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Limitation of Derivative Gain

We do not want to apply derivation to high frequency measure-

ment noise, therefore the following modification is used:

sTd (
sTd

1+ sTd/N

N = maximum derivative gain, often 10− 20
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Derivative Weighting

The setpoint is often constant for long periods of time

Setpoint often changed in steps → D-part becomes very large.

Derivative part applied on part of the setpoint or only on the

measurement signal.

D(s) = sTd

1+ sTd/N
(γ Ysp(s) − Y(s))

Often, γ = 0 in process control (step reference changes),

γ = 1 in servo control (smooth reference trajectories)
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Setpoint Weighting

An advantage to also use weighting on the setpoint.

u = K (ysp − y)

replaced by

u = K (β ysp − y)

0 ≤ β ≤ 1
A way of introducing feedforward from the reference signal

(position a closed loop zero)

Improved set-point responses.
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Setpoint Weighting
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Control Signal Limitations

All actuators saturate. Problems for controllers with integration.

When the control signal saturates the integral part will continue

to grow – integrator (reset) windup.

When the control signal saturates the integral part will integrate

up to a very large value. This may cause large overshoots.
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Anti-Reset Windup

Several solutions exist:

• controllers on velocity form (∆u is set to 0 if u saturates)

• limit the setpoint variations (saturation never reached)

• conditional integration (integration is switched off when the

control is far from the steady-state)

• tracking (back-calculation)
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Tracking

• when the control signal saturates, the integral is recom-

puted so that its new value gives a control signal at the

saturation limit

• to avoid resetting the integral due to, e.g., measurement

noise, the recomputation is done dynamically, i.e., through

a LP-filter with a time constant Tt(Tr).

43



Tracking
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Tracking
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Discretization

P-part:

P(k) = K (β ysp(k) − y(k))
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Discretization

I-part:

I(t) = K
Ti

t
∫

0

e(τ )dτ

dI

dt
= K
Ti
e

• Forward difference

I(tk+1) − I(tk)
h

= K
Ti
e(tk)

I(k+1) := I(k) + (K*h/Ti)*e(k)

The I-part can be precalculated in UpdateStates

• Backward difference

The I-part cannot be precalculated, i(k) = f(e(k))
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Discretization

D-part (assume γ = 0):

D = K sTd

1+ sTd/N
(−Y(s))

Td

N

dD

dt
+ D = −KTd

dy

dt

• Forward difference (unstable for small Td/large h)

• Backward difference

Td

N

D(tk) − D(tk−1)
h

+ D(tk) = −KTd
y(tk) − y(tk−1)

h

D(tk) =
Td

Td + Nh
D(tk−1) −

KTdN

Td + Nh
(y(tk) − y(tk−1))
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Discretization

Tracking:

v := P + I + D;

u := sat(v,umax,umin);

I := I + (K*h/Ti)*e + (h/Tr)*(u - v);
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Tuning

Parameters: K ,Ti,Td,N,β ,γ ,Tr

Methods:

• empirically, rules of thumb, tuning charts

• model-based tuning, e.g., pole-placement

• automatic tuning experiment

– Ziegler-Nichols method

∗ step response method

∗ ultimate sensitivity method

– relay method
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Bumpless Transfer

Avoid bumps in control signal when

• changing operating mode (manual - auto - manual)

• changing parameters

• changing between different controllers

Key Issue: Make sure that the controller states have the correct

values, i.e., the same values before and after the change
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Bumpless Mode Changes

Incremental Form:

Inc PID

A
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Bumpless Mode Changes

Direct Position form:
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Bumpless Parameter Changes

A change in a parameter when in stationarity should not result

in a bump in the control signal.

For example:

v := P + I + D;

I := I +(K*h/Ti)*e;

or

v := P + (K/Ti)*I + D;

I := I + h*e;

The latter results in a bump in u if K or Ti are changed.
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Bumpless Parameter Changes

More involved situation when setpoint weighting is used. The

quantity P+ I should be invariant to parameter changes.

Inew = Iold + Kold(β oldysp − y) − Knew(β newysp − y)
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Switching Controllers

Controller1

Controller2 Switch

Process

Similar to changing between manual and auto

Let the controllers run in parallel

Let the controller that is not active track the one that is active.

Alternatively, execute only the active controller and initialize the

new controller to its correct value when switching (saves CPU)
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PID Code

PID-controller with anti-reset windup and manual and auto

modes (γ = 0).
y = yIn.get();

e = yref - y;

D = ad * D - bd * (y - yold);

v = K*(beta*yref - y) + I + D;

if (mode == auto) {

u = sat(v,umax,umin)}

else u = sat(uman,umax,umin);

uOut.put(u);

I = I + (K*h/Ti)*e + (h/Tr)*(u - v);

if (increment)

uinc = 1;

else if (decrement)

uinc = -1;

else uinc = 0;

uman = uman + (h/Tm) * uinc + (h/Tr) * (u - uman)

yold = y

ad and bd are precalculated parameters given by the backward

difference approximation of the D-term. 57



.

Class SimplePID

public class SimplePID {

private double u,e,v,y;

private double K,Ti,Td,Beta,Tr,N,h;

private double ad,bd;

private double D,I,yOld;

public SimplePID(double nK, double nTi, double NTd,

double nBeta, double nTr, double nN, double nh) {

updateParameters(nK,nTi,nTd,nBeta,nTr,nN,nh);

}

public void updateParameters(double nK, double nTi, double NTd,

double nBeta, double nTr, double nN, double nh) {

K = nK;

Ti = nTi;

Td = nTd;

Beta = nBeta;

Tr = nTr

N = nN;

h = nh;

ad = Td / (Td + N*h);

bd = K*ad*N;

}
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.

public double calculateOutput(double yref, double newY) {

y = newY;

e = yref - y;

D = ad*D - bd*(y - yOld);

v = K*(Beta*yref - y) + I + D;

return v;

}

public void updateState(double u) {

I = I + (K*h/Ti)*e + (h/Tr)*(u - v);

yOld = y;

}

}
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.

Extract from Regul

public class Regul extends Thread {

private SimplePID pid;

public Regul() {

pid = new SimplePID(1,10,0,1,10,5,0.1);

}

public void run() {

// Other stuff

while (true) {

y = getY();

yref = getYref():

u = pid.calculateOutput(yref,y);

u = limit(u);

setU(u);

pid.updateState(u);

// Timing Code

}

}

}
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Alternative PID Realization

The PID controller presented so far does not suppress high-

frequency noise very well (constant gain for high frequencies)

Alternative:

• use a second-order low-pass on the measurement signal

• use the filtered measurement signal, yf , as an input to a

PID with an ideal derivative (without low-pass filter)

• implement the low-pass filter so that dyf/dt is directly

obtainable from the filter

Filter

Low−Pass Ideal

PID

y
yf

dyf /dt
u
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Alternative PID: Low-pass filer

Y f (s) =
1

T2f s
2 + 1.4T f s+ 1

Y(s)

• Relative damping: ζ = 1/
√
2

• Filter constant T f = TI/N (PI) or T f = TD/N (PID), where

N ranges from 2 to 20.

• State-space representation: x1(t) = yf (t) and x2(t) =
dyf (t)/dt

dx1(t)
dt

= x2(t)
dx2(t)
dt

= −1.4
T f
x2(t) −

1

T2f
x1(t) +

1

T2f
y(t)
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Alternative PID: Low-pass filer

Discretize using backward Euler gives

x1[k] = (1−
h2

den
)x1[k− 1] +

hT2f

den
x2[k− 1] +

h2

den
y[k]

x2[k] =
1

den
(T2f x2[k− 1] − hx1[k− 1] + hy[k])

den = (T2f + 1.4hT f + h2)
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Alternative PID: Ideal PID

Since dyf (t)/dt = x2(t) the discretization and the pseudo-code
for the ideal PID becomes very simple, The total PID code
(without anti-windup) including the filter is shown below:

x1 = p1*x1old + p2*x2old + p3*y;

x2 = p4*x2old + p5*(y - x1old);

v = K*(Beta*yref - x1) + I - K*Td*x2;

u = sat(v);

output u

I = I + (K*h/Ti)*(yref - x1);

x1old = x1; x2old = x2;

with the precalculated parameters

den = Tf*Tf + 1.4*h*Tf + h*h;

p1 = 1 - h*h/den;

p2 = h*Tf*Tf/den;

p3 = h*h/den;

p4 = Tf*Tf/den; // equals p2/h

p5 = h/den; // equals p3/h 64


