
Lecture 2: Implementation Alternatives &

Concurrent Programming

[RTCS Ch. 3]

• Implementation Alternatives

• Processes and threads

• Context switches

• Internal representation

1

Implementation Alternatives

Controllers can be implemented using a number of techniques

Several of these are rarely used any longer in industrial

practice, e.g.

• mechanical techniques

• discrete analog electronics

• discrete digital electronics

2

Current Implementation Alternatives

Performance,
Power
efficiency

General−purpose processors

Special−purpose processors

Digital Signal Processors (DSP)

Micro−controllers

Programmable Hardware

Field−Programmable Gate Arrays (FPGA)

Application−Specific Integrated Circuits (ASIC)

System on a Chip (SoC)

Flexibility

3

4

Small Microcontrollers

Limited program memory (e.g. 8-16 kByte)

Limited data memory (e.g. 1-4 kByte)

Processor:

• Main program + interrupt handlers

• (Periodic) timers

• Periodic controllers implemented in interrupt handlers

associated with periodic timers

• Only a limited number of timers

5

Large Microcontrollers

Large amount of memory on chip

External memory

Processor:

• Real-time kernel supporting multiple threads, i.e., concur-

rent programming

6

Multicores

Several processors (cores) on the same chip

Multicore – typically 2-16 cores

Manycore – > 16 cores

Shared main memory

Shared or separate caches

7

Concurrent Programming

1. Multiprogramming: the processes multiplex their

execution on a single CPU

2. Multiprocessing: the processes multiplex their execution
on a multiprocessor system with tightly coupled proces-

sors, e.g., a multi-core platform

3. Distributed processing: the processes multiplex their

execution on several CPUS connected through a network

True parallelism: (2) and (3)

Logical parallelism (pseudo-parallelism): (1) – the main topic

8

Process

Time

A

B

C

Logical concurrency

Process

Time

A

B

C

Time sharing concurrency

Context
Switch

9

Approaches

• Real-Time Operating System (RTOS)

– sequential language (C) with real-time primitives

– real-time kernel for process handling

• Real-time programming language (e.g. Ada)

– the language itself or the run-time system provides the

functionality of a real-time kernel

10

Memory models

Processes may have

• shared address space

– thread (sometimes also called light-weight process)

– shared variables and code

– process = procedure (Modula 2) or run method (Java)

– used in the course

• separate address space

– independent of each other

– cp. Windows

– message-passing

11

Processes vs threads

A thread (light-weight process) resides within an “ordinary”

process and shares it address space.

The scheduler operates on threads.

Process 1

Process 2

Process 3Threads

Scheduler

Windows, Sun Solaris

In the course we will only deal with threads. However, for historical

reasons we, incorrectly, call the STORK threads for processes (not

unusual). 12

Processes and Threads in Linux

Linux does not differentiate between processes and threads

All threads are implemented as processes

A thread is simply a process that shares certain resources,
e.g., memory, with other processes

13

Coroutines

A mechanism for expressing concurrent execution.

A procedure (subroutine) that, instead of returning, resumes another
coroutine.

The context (local data) of the coroutines remains in between

invocations.

3

Coroutine A;

begin
.
.
Resume(B);
.
.
Resume(B);
.
.
end A;

Coroutine B;

begin
.
.
Resume(A);
.
.
Resume(A);
.
.
end B;

1

5

9

7

2

4

6

8

14

Internal Process States

Blocked

Running Ready

waiting event

• Ready – The process is ready to execute.

• Running – The process is currently executing.

• Blocked – The process is waiting for an event.

15

Context Switches

A context switch takes place when the system changes the

running process (thread).

The context of the previously running process is stored and

the context of the process to run next is restored.

16

Priorities

Each process is assigned a number that reflects the importance of
its time demands.

Many RTOS (incl Stork): Low priority number = high priority. Priority
range: 1 - max integer

Java: High priority number = high priority. Priority range: 1 - 10

Using priority-based scheduling, processes that are Ready to

execute are stored in ReadyQueue according to priority.

Higher Priority

Running

Process Process Process Process

17

Multicore Case

Two alternatives: Global scheduling and Partitioned scheduling

Global Scheduling – a single ready queue

Process Process Process Process Process

Running 1 Running 2

Priority

Partitioned scheduling

• one ordinary ready queue per core

• often combined with the possibility to move (migrate)
processes among cores

18

A change (insertion, removal) in ReadyQueue may lead to a context
switch.

If the change results in a new process being the first in ReadyQueue,
a context switch takes place.

• preemptive scheduling

– the context switch takes place immediately (the running
process is preempted)

– Most RTOS and real-time languages (e.g. STORK and Java)

• nonpreemptive scheduling

– the running process continues until it voluntarily releases
the CPU, then the context switch takes place

• scheduling based on preemption points

– the running process continues until it reaches an preemp-
tion point, then the context switch takes place

– early versions of Linux (no preemptions in kernel mode)

19

Assigning priorities

Non-trivial

Global knowledge

Two ways:

• ad hoc rules

– important time requirements [high priority

– time consuming computations [low priority

– conflicts, no guarantees

• scheduling theory

Often easier to assign deadline than to assign priority

20

Dynamic priorities

With priority-based scheduling the priority of a process is fixed.

“Fixed priority scheduling”

In the real-time system community it is increasingly common

to instead study systems where it is the closeness to the

deadline of the processes that decides which process that

should execute.

“Earliest Deadline First (EDF) scheduling”

The deadline can be viewed as a dynamic priority that

changes as time proceeds.

Still not usual in commercial systems.

21

Process Representation

Conceptually a process/thread consists of:

• the code to be executed

– Java: run method

• a stack

– local variables of the process

– arguments and local variables of procedures called by the
process

– when suspended: storage place for the values of pro-
grammable registers and program counter

• a process record (process (task) control block)

– administrative information

– priority, a pointer to the code of the process, a pointer to the
stack of the process, etc

22

Memory Organization: Sequential Program

MODULE Main;

VAR x, z: INTEGER;

y: POINTER TO INTEGER;

PROCEDURE Demo(a : INTEGER, b : INTEGER): INTEGER;

VAR Result: INTEGER;

BEGIN

Result := a * b - b*b;

RETURN Result;

END Demo;

BEGIN

x := 2;

NEW(y);

y^ := 7;

z := Demo(x,y^);

Write(z);

DISPOSE(y);

End Main.

23

Stack

G
ro
w
in
g
 s
ta
c
k

d
ir
e
c
ti
o
n

Data area

Program area

y

z

free-list

Heap end

Heap

Program counter

x -- 2

Code for
Module Main

Stack pointer

Heap start
7

...
New(y);
y^ := 7;
...

24

Stack contents when Demo is called.

A stack frame is created.

Stack

Stack
Pointer

G
ro
w
in
g
 s
ta
c
k

d
ir
e
c
ti
o
n

a

Return address

Result

Return value

b

Result

Parameters

Local variables

25

STORK

.

Memory Organization: Concurrency

MODULE Main;

(* Process *) PROCEDURE ProcessA();

(* Local variable declarations *)

BEGIN

LOOP

Code for ProcessA;

END;

END ProcessA;

(* Process *) PROCEDURE ProcessB();

(* Local variable declarations *)

BEGIN

LOOP

Code for ProcessB;

END;

END ProcessB;

(* Global variable declarations *)

BEGIN

(* Code for creating process A and B *)

Wait statement;

END Main. 26

STORK

.

Program area

Heap start

Heap end

Heap

Program counter

Code for
Module Main

Stack pointer

Main Stack
Main stack end

Global
Data area

ProcessA
(Running)

 ProcessB
(Suspended)

ProcessB Stack

ProcessA Stack

27

STORK

.

Process Record

TYPE

PROCESS = ADDRESS;

ProcessRef = POINTER TO ProcessRec;

Queue = POINTER TO QueueRec;

QueueRec = RECORD

succ, pred : ProcessRef;

priority : CARDINAL;

nextTime : Time;

END;

ProcessRec = RECORD

head : QueueRec;

procv : PROCESS;

timer : CARDINAL:

stack : ADDRESS;

stackSize : CARDINAL;

END;
28

STORK

.

ProcessRec

QueueRec

Real-Time Kernel
Process Record

Modula-2
Process Record

...

stackpointer
...

head: succ
 pred
 ...

procv
timer
stack
stackSize

ReadyQueue

QueueRec
(List Head)

succ
pred

ProcessRec

QueueRec

ProcessRec

QueueRec

Running

Head: succ
 pred
 ...
procv
timer
stack
stackSize

Head: succ
 pred
 ...
procv
timer
stack
stackSize

29

STORK

.

Program area

Global
Data area

ReadyQueue

Running

...

succ

pred
List head

ProcessA Stack

head.pred

procv.stackpointer

head.succ

stack

ProcessB Stack

head.pred

procv.stackpointer

head.succ

stack

ProcessRec
for ProcessA

ProcessA
(Running)

Code for
Module Main

ProcessRec
for ProcessB

ProcessB
(Suspended)

Heap

Stack
pointer

Program
counter

30

STORK

.

Program area

Global
Data area

ReadyQueue

Running

...

succ

pred
List head

ProcessA Stack

head.pred

procv.stackpointer

head.succ

stack

ProcessB Stack

head.pred

procv.stackpointer

head.succ

stack

ProcessRec
for ProcessA

ProcessA
(Running)

Code for
Module Main

ProcessRec
for ProcessB

ProcessB
(Suspended)

Heap

Stack
pointer

Program
counter

31

STORK

.

Program area

Global
Data area

ReadyQueue

Running

...

succ

pred
List head

ProcessA Stack

head.pred

procv.stackpointer

head.succ

stack

ProcessB Stack

head.pred

procv.stackpointer

head.succ

stack

ProcessRec
for ProcessA

ProcessA
(Running)

Code for
Module Main

ProcessRec
for ProcessB

ProcessB
(Suspended)

Heap

Stack
pointer

Program
counter

32

STORK

.

Program area

Global
Data area

ReadyQueue

Running

...

succ

pred
List head

ProcessA Stack

head.pred

procv.stackpointer

head.succ

stack

ProcessB Stack

head.pred

procv.stackpointer

head.succ

stack

ProcessRec
for ProcessA

ProcessA
(Running)

Code for
Module Main

ProcessRec
for ProcessB

ProcessB
(Suspended)

Heap

Stack
pointer

Program
counter

33

STORK

.

Program area

Global
Data area

ReadyQueue

Running

...

succ

pred
List head

ProcessA Stack

head.pred

procv.stackpointer

head.succ

stack

ProcessB Stack

head.pred

procv.stackpointer

head.succ

stack

ProcessRec
for ProcessA

ProcessA
(Running)

Code for
Module Main

ProcessRec
for ProcessB

ProcessB
(Suspended)

Heap

Stack
pointer

Program
counter

34

STORK

.

Program area

Global
Data area

ReadyQueue

Running

...

succ

pred
List head

ProcessA Stack

head.pred

procv.stackpointer

head.succ

stack

ProcessB Stack

head.pred

procv.stackpointer

head.succ

stack

ProcessRec
for ProcessA

ProcessA
(Running)

Code for
Module Main

ProcessRec
for ProcessB

ProcessB
(Suspended)

Heap

Stack
pointer

Program
counter

35

STORK

.

Context Switching

Initiated by a call to Schedule

• directly by the running procedure

• from within an interrupt handler

Happens when:

• when the running process voluntarily releases the CPU

• when the running process performs an operation that may

cause a blocked process to become ready

• when an interrupt has occurred which may have caused a

blocked process to become ready
36

STORK

.

Schedule

PROCEDURE Schedule;

VAR

oldRunning : ProcessRef;

oldDisable : InterruptMask;

BEGIN

oldDisable := Disable(); (* Disable interrupts *)

IF ReadyQueue^.succ <> Running THEN

oldRunning := Running;

Running := ReadyQueue^.succ;

TRANSFER(oldRunning^.procv,Running^.procv);

END;

Reenable(oldDisable);

END Schedule;

• interrupts disabled

• the actual context switch takes place in the Modula-2 primitive
TRANSFER

• the Modula-2 process record pointer as argument
37

STORK

.

TRANSFER is entered in the context of one process and left in

the context of another process.

Process BProcess A

Context switch

Context switch

Schedule
 Disable
 enter TRANSFER; exit TRANSFER;

 Reenable;
END Schedule;

Schedule
 Disable;
 enter TRANSFER; exit TRANSFER;

 Reenable;
END Schedule;

Context switch

 exit TRANSFER;
 Reenable;
END Schedule;

38

STORK

.

Process BProcess A

Schedule
 Disable;
 enter TRANSFER;

 exit TRANSFER;
 Reenable;
END Schedule;

Schedule
 Disable
 enter TRANSFER;

 exit TRANSFER;
 Reenable;
END Schedule;

Process C

Context switch

Context switch

Context switch

 exit TRANSFER;
 Reenable;
END Schedule;

Schedule
 Disable;
 enter TRANSFER;

39

STORK

.

Inside TRANSFER

The actual context switch

• Saving: the state of the processor immediately before the

switch is saved on the stack of the suspended process

• Switching: the context switch

– the value of the stack pointer is stored in the process

record of the suspended process

– the stack pointer is set to the value that is stored in the

process record of the new process

• Restoring: the state of the resumed process is restored

(popped from its stack)
40

STORK

.

Saving

Switching

Restoring

Old context

New Context

Turn off all interrupts
Push the program counter on the stack;
Push the programmable registers on the stack;
Push the status registers on the stack;

Save the value of the stack pointer in the process record;
Set the value of the stack pointer to the value stored in
the new process;

Pop the status registers from the stack;
Pop the programmable registers from the stack;
Pop the program counter from the stack;
Turn on all interrupts;

41

Hyperthreading

Many new architectures support hyperthreading.

The processor registers are duplicated.

One set of registers is used for the thread currently being

executed. The other set (in the case of two hyperthreads) is

used for the thread that is next to be executed, e.g., the thread

with the next-highest priority.

When context-switching between these two threads no context

need to be saved and restored.

The processor only needs to change which set of register that

it operates upon, which takes substantially less time.

42

.

Java in Real-Time

Three possibilities:

1. Ahead-of-time (AOT) Compilation

• Java or Java bytecode to native code

• Java or Java bytecode to intermediate language (C)

2. Java Virtual Machine (JVM)

• as a process in an existing OS

– green thread model — the threads are handled

internally by the JVM

– native thread model — the Java threads are

mapped onto the threads of the OS

• executing on an empty machine

– green thread model

3. direct hardware support, e.g., through micro-code
43

.

Java Execution Models

Compiled Java:

• works essentially in the same way as presented for
STORK

JVM with native-thread model:

• each Java thread is executed by a native thread

• similar to what has been presented before
44

.

Java Execution Models

JVM with green-thread model:

• threads are abstractions inside the JVM

• the JVM holds within the thread objects all information

related to the threads

– the thread’s stack

– the current instruction of the thread

– bookkeeping information

• the JVM performs context switching between threads by

saving and restoring thread contexts

• the JVM program counter points at the current instruction

of the executing thread

• the global program counter points at the current instruction

of the JVM
45

.

Thread creation

Two ways:

• By defining a class that extends (inherits from) the Thread

class

• By defining a class that implements the runnable interface

(defines a run method)

The run method contains the code that the thread executes.

The thread is started by a call to the start method.

A Java thread active object, as opposed to a passive object.
46

.

Thread creation: Extending Thread

public class MyThread extends Thread {

public void run() {

// Code to be executed

}

}

Start of the thread:

...

MyThread m = new MyThread();

m.start();

...
47

.

Thread creation: Implementing Runnable

This way is used when the active object needs to extend some

other class than Thread.

public class MyClass implements Runnable {

public void run() {

// Code to be executed

}

}

Since an instance of MyClass is no longer a Thread object, the

starting of the thread is slightly more complicated.

...

MyClass m = new MyClass();

Thread t = new Thread(m);

t.start();

...

Drawback: non-static Thread methods are not directly accessi-

ble inside the run method (example later on)
48

.

Thread creation: Thread as a variable

public class MyThread extends Thread {

MyClass owner;

public MyThread(MyClass m) {

owner = m;

}

public void run() {

// Code to be executed

}

}

public class MyClass extends MySuperClass {

MyThread t;

public MyClass() {

t = new MyThread(this);

}

public void start() {

t.start();

}

}

Makes it possible for an active object to contain multiple execution

threads.
49

.

Thread creation: Thread as an inner class

public class MyClass extends MySuperClass {

MyThread t;

class MyThread extends Thread {

public void run() {

// Code to be executed

}

}

public MyClass() {

t = new MyThread();

}

public void start() {

t.start();

}

}

No explicit owner reference needed. MyThread has direct access to
variables and methods of MyClass.

The inner class need not have a name – an anonymous class

(Exercise 1) 50

.

Thread Priorities

A newly created thread inherits the priority of the creating

thread.

The default priority is NORM_PRIORITY which is 5

Thread priority is changed by calling the nonstatic Thread

method setPriority.

public class MyClass implements Runnable {

public void run() {

Thread t = Thread.currentThread();

t.setPriority(10);

// Code to be executed

}

}

The static currentThread method is used to get a reference to

thread of MyClass. This reference is then used to call the nonstatic

setPriority method.
51

.

Thread termination

A thread terminates when its run method terminates.

To stop a thread from some other thread the recommended

solution is to use a flag.

public class MyClass implements Runnable {

boolean doIt = true;

public void run() {

while (doIt) {

// Code to be executed periodically

}

}

}

The thread is stopped by setting the doIt flag to false, either

directly or by using some access method provided by MyClass.

Sleeping threads will not terminate immediately
52

Scheduling in Linux

Three different scheduling classes (schedulers)

• SCHED_NORMAL

– the default scheduler

– from 2.6.23 based on the Completely Fair Scheduler (CFS)

– not a real-time scheduler

– round robin-based

– fairness and efficiency major design design goals

– tradeoff between low latency (e.g., IO-bound processes) and
high throughput (e.g., for compute-bound processes)

• SCHED_FIFO and SCHED_RR

– two quite similar real-time scheduling policies

– always have priority over SCHED_NORMAL tasks

– behaviour similar to, e.g. STORK
53

