
Real-Time Systems

Laboratory 2: Sequence Control

Solenoid 1 Solenoid 2

Solenoid 3

Solenoid 4

Colour
Sensor

Bead
Sensor

SORTER

Black bead compartment Yellow bead compartment

Karl-Erik Årzén, Rasmus Olsson,
Mattias Grundelius, Vanessa Romero Segovia

Department of Automatic Control
Lund Institute of Technology

October 2012



Introduction

Sequence Control

The topic of the laboratory is sequence control of a bead sorter process us-
ing Grafcet/SFC. Although a toy, the bead sorter process contains many of
the control problems found in discrete manufacturing control applications. A
Grafcet/SFC editor and execution environment called JGrafchart is used to
implement the sequence control.

SFC (Sequential Function Chart) defined in the IEC 848 standard is a graphi-
cal programming language used for PLCs (Programmable Logic Controllers).
It is one of the five languages defined in IEC 61131-3 standard. The SFC in-
herits its characteristics from the French standard Grafcet which itself is based
on Petri nets.

The basic concepts of this discrete system model are steps, actions, transi-
tions, and conditions associated with transitions. A step represents a partial
state of the system, in which an action can be performed. The step can be ac-
tive or inactive; an action associated with a step is only performed when the
step is active. A transition represents a logic condition and defines the direct
link between steps.

Grafcet/SFC allows programming of sequential logic and parallel control exe-
cution (multiple control flows can be active at once). This makes Grafcet/SFC
very suitable for solving problems related to manufacturing control applica-
tions.

Before the laboratory you must have read the laboratory manual and answered
the preparation exercises.

2



1. JGrafchart

JGrafchart is a Grafcet editor and execution environment developed at the
Department of Automatic Control, Lund Institute of Technology. JGrafchart
is written in Java using Swing graphics. It also uses JGo, a class package for
graphical object editors from Northwoods Corporation, and JavaCC, a Java
parser generator from Sun. In the laboratory you will run JGrafchart on top of
Linux.

Note: JGrafchart has a built-in Undo/Redo function. However, in certain

situations it does not work as intended. Therefore it is currently disabled.

Hence, be careful before deleting any items and make sure that you save

your Grafcet application to file regularly.

In the laboratory you will also use a stripped down version of JGrafchart

that only contains the language elements that you will actually use.

1.1 Workspaces

Grafcet sequence diagrams are created interactively using drag-and-drop from
a palette containing the different Grafcet language elements. The sequence
diagrams are stored on JGrafchart workspaces, implemented as Java internal
frames, see Fig.1.1.

Palette
Workspace

Figure 1.1 JGrafchart main interface

Workspaces can be stored to a file and loaded from a file. The XML format is
used for storing. Workspaces support scroll, pan, and zoom. It is possible to
change their size, to iconize them, etc. The default name of a workspace (J1,

3



J2, ...) can be changed from the Properties menu choice in the File menu. If
multiple workspaces are used, only one of them is the current focus for menu
choices. This is indicated through a blue workspace border, rather than the
ordinary gray border. The focus is changed by clicking on a workspace. This
also automatically moves the workspace to the front.

On a workspace it is possible to select an object or an area containing multiple
objects in the standard fashion. A selected object can be moved, cut to the
clipboard, or copied to the clipboard. The contents of the clipboard can be
pasted to a workspace.

Grafcet objects are connected together graphically by clicking on the connec-
tion stubs. A connection can be moved by selecting it and moving a corner
point. This is specially needed when a Grafcet object is connected to another
object that lies above the first object.

A selected Grafcet object or connection is deleted using the Delete key.

1.2 Grafcet elements

JGrafchart supports the following Grafchart elements: steps, initial steps, tran-
sitions, parallel splits, parallel joins, macro steps, digital inputs, digital out-
puts, and internal variables (boolean and integer).

Steps

Grafcet steps have action blocks that may be made visible or hidden through
menu choices on the step menu that is obtained by double-clicking on the
step, see Fig. 1.2. Step actions are entered as text strings, either directly by

Figure 1.2 Step with action block hidden and visible.

clicking on the text string in the action block or through the Edit step menu
choice. The latter is an advantage, since the editor type-in-field in the action
block does not adjust its size with the text during typing. Multiple step actions
are separated by semi-colons.

Four different action types are supported. Stored actions (impulse actions) are
executed once when the step is activated. The syntax for step actions is:
S "variable-or-output" = "expression";

Periodic actions (always actions) are executed periodically, once every scan
cycle, while the step is active. The syntax for periodic actions is:
P "variable-or-output" = "expression"; The default scan cycle is 40
ms.

4



Exit actions (finally actions) are executed once, immediately before the step
is deactivated. The syntax for exit actions is:
X "variable-or-output" = "expression";

Normal actions (level actions) associate the truth value of a digital output with
the activation status of the step. The syntax for a normal action is:
N "output";

The expression syntax follows the ordinary Java syntax, with some minor ex-
ceptions. One important exception is that the literal 0 (1) is used both to rep-
resent the boolean literal false (true) and the integer literal 0 (1). The context
decides the interpretation.

The operators supported are: + (plus), - (minus), * (multiplication), / (integer
division), ! (negation), & (and), | (or), == (equal), != (not equal), < (less than),
> (greater than), <= (less or equal), >= (greater or equal).

Expressions may contain name references to inputs, outputs, and variables.
JGrafchart uses lexical scoping based on workspaces. For example, a vari-
able named X on workspace W1 is different from a variable named X on
workspace W2. References between workspaces are expressed using dot-
notation. For example, a step action in a step on workspace W1 can refer
to the variable Y on workspace W2 using W2.Y.

By default steps do not have any names. In order to give a step a name use
the Set Name menu choice of the step. During compilation unnamed steps
are automatically given temporary names on the form #0, in order to make it
possible to identify a step in case of compilation errors.

Initial steps

Initial steps are ordinary steps that are active initially when the execution of
the sequence diagram starts. Initial steps may have actions in the same way as
ordinary steps.

Transitions

Transitions represent conditions or events that should be true in order for the
Grafcet to change state. The transition expression is represented by a text
string associated with the transition, see Fig. 1.3. A transition expression is
edited either directly by clicking on the expression or through the Edit transi-
tion menu choice.

The transition expression should return a boolean value. The expression syn-
tax is the same as for step actions with a few additions. The expression "step".x
returns true if the step is active and false otherwise. The expression "step".t
returns the number of scan cycles since the step was last activated. The expres-
sion "step".s returns the number of seconds since the step was last activated.
The expression /"boolean-input" represents a positive trigger event. It is true
if the value of an input was false in the previous scan cycle and is true in the
current cycle. Similarly, the expression \"boolean-input" represents a nega-
tive trigger event. For example, the expression (/y | \y) is true whenever
the boolean input y changes its value.

5



Figure 1.3 Transition

Parallel Splits and Joins

Parallel branches are created and terminated with parallel splits and parallel
joins. The parallel objects only allow two parallel branches. If more branches
are needed, the parallel elements can be connected in series, see Fig. 1.4.

Figure 1.4 Parallel branching with three branches.

Macro Steps

A macro step represents a hierarchical abstraction. The macro step contains
an internal structure of steps, transitions, and macro steps represented on a
separate (sub)workspace. The sub-workspace is made visible and hidden by
double-clicking on the macro step. The first step in the macro step is repre-
sented by a special enter step. Similarly the final step of the macro step is
represented by a special exit step. Both the enter step and exit step are ordi-
nary steps and may have actions. The macro step itself may also have actions.
The situation is shown in Fig. 1.5.

The sub-workspace of a macro step has a local namespace lexically con-
tained within the namespace of the macro step itself. For example, the sub-

6



Figure 1.5 Macro step M2 with internal structure. The internal structure contains
the enter step S1 and the exit step S2.

workspace of the macro step M1 may itself contain a macro step named M1,
without causing any ambiguities.

Digital Inputs and Outputs

Digital inputs represent boolean variables that can be read by the steps and
transitions in a sequence diagram. Similarly, digital outputs represent boolean
variables that can be written to by the step actions in the sequence diagram.
Each input and output has an associated value (0 or 1), a name, and a channel
number, see Fig. 1.6. The name and channel numbers can be changed through
click-and-edit. For digital inputs, the value can be toggled by double-clicking
on the input. Digital inputs have the initial value 0. Two types of digital output
exists. One with ordinary logic (initial value 0) and one with inverted logic
(initial value 1). Digital inputs and outputs may only be located on top-level
workspaces.

Digital Input Digital Output

Channel
no.

Value

Name

Figure 1.6 Digital input and output.

Internal Variables

Internal variables are variables that can be both read from and written to.
Four types of variables are available: real variables, boolean variables, integer
variables, and string variables. Associated with each variable are its value and
its name, see Fig. 1.7. Both can be changed by click-and-edit.

7



Figure 1.7 Boolean variable (left) and integer variable (right).

By default, a variable retains its value when the application is stopped and
later restarted. Optionally, the user may give a variable an initial value. If the
variable has an initial value its value will be set to the initial value every time
the application is started. If you do not use any initial value you must make
sure that the variable is initialized in the appropriate step.

1.3 Execution

Grafcet sequence diagrams are executed by a periodic thread associated with
each top-level workspace. The thread cyclically performs three operations:

1. Read Inputs. The values of the digital inputs are read.

2. Execute Diagram. All the transitions in the diagram are checked. Steps
are activated and deactivated.

3. Write Outputs. The values of the digital outputs are written.

A Grafcet sequence diagram can be executed in two different modes. In sim-
ulated mode the inputs and outputs are only connected to the graphics on the
screen. In on-line mode (non-simulated mode), additionally, inputs are read
from the digital I/O and outputs are written to the digital I/O. This mode only
works when executing on the machines in the lab rooms of our department.
The execution mode and the thread sleep interval determining the scan rate
may be changed using the Properties menu choice. Note that changing the
thread sleep interval also affects all wait intervals, since "step".t returns the
number of scan cycles.

Before a sequence diagram can be executed it must be compiled. This is done
through the Execute menu or by pressing the wrench button. During compi-
lation two things are performed. First, for every transition two lists are built
up. One list containing references to all the steps preceding the transition, and
one list containing references to all the steps succeeding the transition. Sec-
ond, the transition expressions and step actions are compiled. Compilation
errors are shown in the message menu just below the tool bar.

The execution is started through the Execute menu or by pressing the arrow
button. The execution is stopped through the Execute menu or by pressing the
stop sign button.

8



Two types of problems may arise during compilation: parsing errors and sym-
bol table lookup errors. Parsing errors are actually detected already when the
step actions and transition expressions are entered. For example, the transition
expression (y OR z) would generate a parsing error. (The syntactically correct
expression should be (y | z)). Symbol table lookup errors occur if a name
reference does not exist, e.g., if there does not exist any variables named y

or z in the previous example. Both parsing errors and symbol table lookup
errors are indicated by a change in the text colour of the transition expression
or step action from black to red. NOTE: In the current version of JGrafchart
symbol table lookup errors involving name references that point to the wrong
type of objects are not caught! For example, assume that y is the name of a
variable, and the following transition expression is compiled: (y.t > 10).
For this to work y should be the name of a step rather than a variable. Errors
of this type may generate run-time faults that may crash JGrafchart. You are
therefore recommended to regularly save your work on file.

The syntax for transition expressions and step actions is expressed by formal
grammars. The parser generator tool JavaCC is used to generate Java parsers
for these text expressions. During the parsing, a syntax tree is built up. During
compilation the syntax tree is traversed, and all nodes representing name ref-
erences are replaced by Java references to the corresponding Grafcet object.
The expressions are evaluated on-line, again by traversing the syntax tree. For
example, assume that a transition contains the transition expression y = 5

and that y is the name of an integer variable. During parsing the syntax tree in
Fig. 1.8 is generated and during compilation the symbol reference is created.

y = 5

Syntax tree

Equal Node

Name
reference
node

y Constant
node

5

y

Int 0

Symbol
reference

Figure 1.8 Syntax tree for the expression y = 5.

In the Execute Diagram part of the execution cycle the following operations
are performed. For each transition in the diagram, the transition expression is
evaluated. If it is false, then the transition icon is changed to red. If it is true,
the transition icon is changed to green. If, additionally, all steps preceding the
transition are active, then the steps preceding the transition are marked to be-
come deactivated in the next cycle, and all the steps succeeding the transition
are marked to become activated in the next cycle. When all transitions have
been checked, the change of step state is effectuated. In addition to the things
above, step actions are executed and the step timing information is updated.

9



2. Bead sorting

The bead sorting process is a laboratory version of a process that is similar to
processes often found in the manufacturing industry. The main objective is to
select sequences of two different components and subsequently re-sort them.
Beads of two different colours (black and yellow) are used to represent the
components. The beads of each colour are provided from separate compart-
ments and when it is required to select a particular bead colour, the relevant
solenoid is activated. An opto-electronic sensor is situated in the bead path
and signals from this are used to determine whether or not a bead has actu-
ally been released from the compartment or not. If one of the bead sources
is empty, or if a bead is not dispensed when requested, a LED lamp can be
activated.

The sequence of coloured beads (e.g. 1 black, 1 yellow, etc. or 2 black, 1
yellow, 2 black etc) that has been selected will finally be shown in the track at
the bottom of the unit. At this point the unit is turned over and the beads run
back to a colour sensor. According to the colour detected, the program should
activate the sorting solenoid. This is repeated until all the beads are back in
the correct compartment. At this point the bead sensing opto-electronic device
will indicate that no further beads are passing and the LED lamp can again be
activated. The process is shown in Figure 2.1. Here, the sequencing mode of
the process is shown. The sorting mode is obtained by rotating it 180 degrees.

Solenoid 1 Solenoid 2

Solenoid 3

Solenoid 4

Colour
Sensor

Bead
Sensor

SORTER

Black bead compartment Yellow bead compartment

Figure 2.1 Bead sorter unit. The solenoids are in their initial (open) positions.

10



Template Grafchart

A Grafchart is available with inputs, outputs and parameters predefined, see
Figure 2.2. A template of the sequences including the logic for switching
between sorting and sequencing mode is also in the Grafchart. The scan cycle
of the Grafchart is 10 ms.

The following output variables are available:

Name Channel Type Description

Sol1-Sol4 30-33 digital outputs with inverse logic, open (true),
close (false) the solenoids

LED 37 digital output used to indicate the completion
of modes

ResetBead 35 digital output used to reset (initialized to 0) the
value in the analog bead sensor

ResetColour 36 digital output used to reset (initialized to 0) the
value in the analog colour sensor

The following input variables are available:

Name Channel Type Description

Tilt 30 digital input that is true when the process is
turned 180 degrees (uses an accelerom-
eter)

AnalogBead 32 analog input for the presence of a bead

Col 33 analog input for the bead colour

Simple logic contained within the ColourLogic and BeadLogic macro steps
convert the analog inputs to corresponding boolean variables Colour and
Bead. When you write your programs you should use these boolean variables
(virtual sensors) in the same way as if they had been real sensors.

The bead and colour sensors must be reset each time they have detected a
bead. This is done by sending a short pulse to the reset signal. It is impor-
tant that the reset signal is TRUE for at least one cycle, and then FALSE
for a sufficiently large time before the sensor values are read. Suitable ini-
tial values for this are available in the integer variables SortReleaseTime

and SeqReleaseTime. In your program you should use these variables rather
than numerical values directly.

Additionally the following variables are also defined and should be used as
parameters: SortWaitTime, SeqWaitTime, NbrBlack and NbrYellow.

The sorting and sequencing algorithms should be entered in the corresponding
macro steps, see Figure 2.2.

11



Name Type Description

SortReleaseTime integer number of scan cycles during which the
sorting solenoid should be open (Sol3,
Sol4)

SeqReleaseTime integer number of scan cycles during which
a sequencing solenoid should be open
(Sol1, Sol2)

SortWaitTime integer number of scan cycles to wait for the
bead to pass solenoid 3

SeqWaitTime integer number of scan cycles to wait for the
bead sensor to detect a bead

NbrBlack integer number of black beads in the sequence
pattern

NbrYellow integer number of yellow beads in the sequence
pattern

Sort boolean variable that shows activation of the sort
mode

Seq boolean variable that shows activation of the se-
quence mode

Preparatory exercise 1: Draw the Grafcet sequence for the sequencing
mode of the bead sorting unit. Let the sequence pattern be 1 black, 1 yellow,
1 black, etc.. To release a bead from a compartment you activate solenoid 1
or 2 for a short time. The sequence should describe the following sequencing
algorithm:

1. Reset the sensors as described above.

2. Release a bead from compartment 1 and wait long enough for the bead
to pass the bead sensor.

3. If a bead is detected, go to step 4, otherwise repeat steps 1 and 2. If no
bead has been detected after 5 attempts, go to step 7.

4. Reset the sensors.

5. Release a bead from compartment 2 and wait long enough for the bead
to pass the bead sensor.

6. If a bead is detected, go to step 1, otherwise repeat steps 4 and 5. If no
bead has been detected after 5 attempts, go to step 7.

7. At least one of the compartments is now empty, and the sequencing
algorithm may be finished.

Preparatory exercise 2: Draw the Grafcet sequence for the sorting mode
of the bead sorting unit. Use the following sorting algorithm:

1. Reset the sensors.

12



Figure 2.2 The template Grafchart.

2. Determine the colour of the bead above solenoid 4, and let this decide
the position of solenoid 3.

3. Release the bead by opening solenoid 4 for a short time.

4. Wait long enough for the bead to pass solenoid 3.

5. As long as there are still beads above solenoid 4, repeat steps 1-4. If no
bead has been released during the 3 last cycles, go to step 6.

6. The sorting algorithm is finished.

Exercise 1: Enter the two main sequences inside the macro steps Sort-
ing and Sequencing respectively, and ensure that they work properly. The
JGrafchart program should be started after you have turned on the bead sorter
process.

Exercise 2: Modify step 7 in the sequencing algorithm above so that all
remaining beads are released from compartment 1 or 2 after the sequencing
has completed.

Lamp alarm

The sorter unit is equipped with a LED lamp that can be used to signal that a
mode has run to completion.

13



Exercise 3: Add the lamp alarm function to your sequences.

Exercise 4: Modify the sequence in order to allow other parametrized se-
quences (e.g. n black beads, m yellow beads etc).

14


