
Lecture 9: State Feedback and Observers

[IFAC PB Ch 9]

• State Feedback

• Observers

• Disturbance Estimation

1

Control Design

Many factors to consider, for example:

• Attenuation of load disturbances

• Reduction of the effect of measurement noise

• Command signal following

• Variations and uncertainties in process behavior

2

Two Classes of Control Problems

Regulation problems: compromise between rejection of load
disturbances and injection of measurement noise

• Lecture 9

Servo problems: make the output respond to command
signals in the desired way

• Lecture 10

3

State Feedback: Problem Formulation

x u y

−L Process

• Discrete-time process model

x(k+ 1) = Φx(k) + Γu(k)

• Linear feedback from all state variables

u(k) = −Lx(k)

• Disturbances modelled by nonzero initial state x(0) = x0

• Goal: Control the state to the origin, using a reasonable
control signal

4

Closed-Loop System

The state equation

x(k+ 1) = Φx(k) + Γu(k)

with the control law

u(k) = −Lx(k)

gives the closed-loop system

x(k+ 1) = (Φ − ΓL) x(k)

Pole placement design: Choose L to obtain the desired
characteristic equation

det(zI − Φ + ΓL) = 0

(Matlab: place or acker) 5

Example – Double Integrator

x(k+ 1) =









1 h

0 1








x(k) +









h2/2

h








u(k)

Linear state-feedback controller

u(k) = −Lx(k) = −l1x1(k) − l2x2(k)

The closed-loop system becomes

x(k+ 1) = (Φ − ΓL)x(k)

=









1− l1h
2/2 h− l2h

2/2

−l1h 1− l2h








x(k)

Characteristic equation

z2 +

(

l1h
2

2
+ l2h− 2

)

z+

(

l1h
2

2
− l2h+ 1

)

= 0
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E
xam

ple
C

ont’d

C
haracteristic

equation

z
2
+

(

l
1 h
2

2
+
l
2 h
−
2

)

z
+

(

l
1 h
2

2
−
l
2 h
+
1

)

=
0

A
ssum

e
desired

characteristic
equation

z
2
+
a
1
z
+
a
2
=
0.

Linear
equations

for
l
1

and
l
2

l
1 h
2

2
+
l
2 h
−
2
=
a
1

l
1 h
2

2
−
l
2 h
+
1
=
a
2
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E
xam

ple
C

ont’d

S
olution:

l
1
=
1h
2
(1
+
a
1
+
a
2 )

l
2
=
12h
(3
+
a
1
−
a
2 )

•
L

depends
on
h

8

W
here

to
P

lace
the

P
oles?

R
ecallfrom

Lecture
7:

Lociof
constant

ζ
(solid)

and
ω
h

(dashed)
w

hen

ω
2

s
2
+
2ζ

ω
s
+

ω
2

is
sam

pled:

9

E
xam

ple
–

C
hoice

ofD
esign

P
aram

eters

D
ouble

integrator,
x
T0
=
[
1
1
],

ω
h
=
0
.4
4,

ζ
=
0
.7
0
7

(b)
ω
=
0
.5

(dash-dotted),
(c)

ω
=
1

(dashed),
(d)

ω
=
2

(solid)

1
0

D
eadbeatC

ontrol—
O

nly
in

D
iscrete

T
im

e

C
hoose

P
(
z)
=
z
n
[
h

only
rem

aining
design

param
eter

D
rives

allstates
to

zero
in

at
m

ost
n

steps
after

an
im

pulse
disturbance

in
the

states
(can

be
very

aggressive
for

sm
all
h

!)

F
inite

tim
e

as
opposed

to
infinite

tim
e

in
continuous

tim
e.

E
xam

ple:
D

ouble
integrator,

x
T0
=
[
1
1
]

1
1

C
ontrollability

T
he

eigenvalues
of

Φ
−

Γ
L

can
be

assigned
to

arbitrary
positions

if
and

only
if

the
system

is
controllable,

i.e.
if

the
controllability

m
atrixW

c
=



Γ
Φ

Γ
...

Φ
n
−
1Γ



has
fullrank.

In
practice,

m
oving

som
e

eigenvalues
could

require
high

gain
and

lead
to

bad
controllers.

1
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S
tate

F
eedback

in
C

ontrollable
F

orm

W
e

previously
derived

the
controllable

canonical
form

x
(k
+
1
)
=

266664

−
a
1
−
a
2
...

−
a
n

1
0

...
0

...
...

1
0

377775

x
(k
)
+

266664

10...0

377775

u
(k
)

In
this

case,
application

of
the

state
feedback

u
=
−
l1
x
1
−

⋅⋅⋅ −
ln
x
n

changes
the

coefficients
a
1 ,...,a

n
to
a
1
+
l1 ,...,a

n
+
l
n ,

so
the

characteristic
polynom

ial
changes

to

z
n
+
(a
1
+
l1 )z

n
−
1
+

⋅⋅⋅ +
(a
n
−
1
+
ln
−
1 )z

+
a
n
+
ln

D
esign

m
ethod:

Transform
to

controllable
canonical

form
,

apply
state

feedback,
transform

the
controller

back
again

–
A

ckerm
ann’s

form
ula

(see
IFA

C
P

B
)

1
3

S
tate

F
eedback

w
ith

IntegralA
ction

Integralaction
can

be
introduced

by
augm

enting
the

plant
m

odelw
ith

an
extra

state
variable,

x
i ,

that
integrates

the
plant

output:
x
i (k
+
1
)
=
x
i (k
)
+
y(k
)
=
x
i (k
)
+
C
x
(k
)

T
he

augm
ented

open-loop
system

becom
es



x
(k
+
1
)

x
i (k
+
1
)



=



Φ
0

C
I





x
(k
)

x
i (k
)



+



Γ0



u
(k
)

W
e

can
then

design
a

state
feedback

controller

u
(k
)
=
−



L
L
i





x
(k
)

x
i (k
)



using
the

sam
e

techniques
as

before

(Integralaction
can

also
be

introduced
using

a
disturbance

observer,
as

w
e

w
illsee

later)
1
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R
econstruction

W
hat

should
you

do
if

you
can

not
m

easure
the

fullstate
vector

or
if

you
have

noisy
m

easurem
ents?

1
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R
econstruction

T
hrough

D
irectC

alculations

B
asic

idea:
R

econstruct
the

state
vector

through
direct

calcula-
tions

using
the

input
and

output
sequences

y(k
),
y(k

−
1
),
...,

u
(k
),
u
(k
−
l),
...

together
w

ith
the

state-space
m

odelof
the

plant.

E
xplained

in
detailin

IFA
C

P
B

pg
61–62

M
ake

sure
that

you
understand

it
(a

lot
of

notation
but

not
difficult!)

O
ften

sensitive
to

disturbances.

A
better

alternative
is

to
use

the
m

odelinform
ation

explicitly.

1
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R
econstruction

U
sing

A
n

O
bserver

x̂

u
y

O
b
se
r
v
e
r

P
ro
ce
ss

S
im

ulated
process

m
odel:

x̂
(k
+
1
)
=

Φ
x̂
(k
)
+

Γ
u
(k
)

ŷ(k
)
=
C
x̂
(k
)

Introduce
"feedback"

from
m

easured
y(k
)

x̂
(k
+
1
)
=

Φ
x̂
(k
)
+

Γ
u
(k
)
+
K

(

y(k
)
−
C
x̂
(k
)
)

1
7

F
orm

the
estim

ation
error

x̃
=
x
−
x̂

x̃
(k
+
1
)
=

Φ
x̃
(k
)
−
K
C
x̃
(k
)

=
[Φ
−
K
C
]x̃
(k
)

•
A

ny
observer

poles
possible,

provided
the

observability
m

atrix

W
o
=



C...

C
Φ
n
−
1



has
fullrank

•
C

hoose
K

to
get

good
convergence

•
Trade-off

against
m

easurem
ent

noise
am

plification

1
8



D
eadbeatO

bserver

A
deadbeat

observer
is

obtained
if

the
observer

gain
K

is
chosen

so
that

the
m

atrix
Φ
−
K
C

has
alleigenvalues

zero.

T
he

observer
error

goes
to

zero
in

finite
tim

e
(in

at
m

ost
n

steps,
w

here
n

is
the

order
of

the
system

)

N
oise

sensitive
(fast

observer
dynam

ics)

E
quivalent

to
reconstruction

using
direct

calculations.

1
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O
bserver

for
the

D
ouble

Integrator

Φ
−
K
C
=



1
h

0
1


−



k
1

k
2





1
0



=



1
−
k
1
h

−
k
2

1



C
haracteristic

equation

z
2
−
(2
−
k
1 )
z
+
1
−
k
1
+
k
2 h
=
0

D
esired

characteristic
equation:

z
2
+
p
1
z
+
p
2
=
0

G
ives:

2
−
k
1
=
−
p
1

1
−
k
1
+
k
2 h
=
p
2

2
0

O
bserver

for
the

D
ouble

Integrator
cont’d

S
olution:

k
1
=
2
+
p
1

k
2
=
(1
+
p
1
+
p
2 )/
h

A
ssum

e
deadbeat

observer
(p
1
=
p
2
=
0)

k
1
=
2

k
2
=
1
/
h

R
esulting

observer

x̂
1 (k

+
1
)
=
x̂
1 (k
)
+
h
x̂
2 (k
)
+
2
(

y(k
)
−
x̂
1 (k
)
)

x̂
2 (k

+
1
)
=
x̂
2 (k
)
+
1h

(

y(k
)
−
x̂
1 (k
)
)

2
1

A
n

A
lternative

O
bserver

T
he

observer
presented

so
far

has
a

one
sam

ple
delay:

x̂
(k
p
k
−
1
)

depends
only

on
m

easurem
ents

up
to

tim
e
k
−
1

A
lternative

observer
w

ith
direct

term
:

x̂
(k
p
k
)
=

Φ
x̂
(k
−
1
p
k
−
1
)
+

Γ
u
(k
−
1
)

+
K

[

y(k
)
−
C

(

Φ
x̂
(k
−
1
p
k
−
1
)
+

Γ
u
(k
−
1
)
)
]

=
(
I
−
K
C
)
(

Φ
x̂
(k
−
1
p
k
−
1
)
+

Γ
u
(k
−
1
)
)

+
K
y(k
)

R
econstruction

error:

x̃
(k
p
k
)
=
x
(k
)
−
x̂
(k
p
k
)
=
(Φ
−
K
C

Φ
)
x̃
(k
−
1
p
k
−
1
)

•
Φ
−
K
C

Φ
can

be
given

arbitrary
eigenvalues

if
Φ
−
K
C

can

•
K

m
ay

be
chosen

so
that

som
e

of
the

states
w

ill
be

observed
directly

through
y
[

the
order

of
the

observer
can

be
reduced

–
R

educed
order

observer
or

Luenberger
observer

2
2

O
utputF

eedback

S
tate

feedback
from

observed
state:

C
ontroller:

x̂
(k
+
1
)
=

Φ
x̂
(k
)
+

Γ
u
(k
)
+
K
(
y(k
)
−
C
x̂
(k
))

u
(k
)
=
−
L
x̂
(k
)

Transfer
function

from
y

to
u

:
−
L
(
z
I
−

Φ
+

Γ
L
+
K
C
)
−
1
K

2
3

A
nalysis

ofthe
C

losed-Loop
S

ystem

x
(k
+
1
)
=

Φ
x
(k
)
+

Γ
u
(k
)

x̃
(k
+
1
)
=
(Φ
−
K
C
)x̃
(k
)

u
(k
)
=
−
L
x̂(k
)
=
−
L
(x
(k
)
−
x̃
(k
))

E
lim

inate
u
(k
)



x
(k
+
1
)

x̃
(k
+
1
)


=



Φ
−

Γ
L

Γ
L

0
Φ
−
K
C





x
(k
)

x̃
(k
)



S
eparation

C
o
n
tro
l
p
o
le
s:
A
c (
z)
=
d
e
t(
z
I
−

Φ
+

Γ
L
)

O
b
se
r
v
e
r
p
o
le
s:
A
o (
z)
=
d
e
t(
z
I
−

Φ
+
K
C
)

2
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D
isturbance

E
stim

ation

H
ow

to
handle

disturbances
that

can
not

be
m

odeled
as

im
pulse

disturbances
in

the
process

state?

A
ssum

e
that

the
process

is
described

by

d
x

d
t
=
A
x
+
B
u
+
v

y
=
C
x

w
here

v
is

a
disturbance

m
odeled

as

d
wdt
=
A
w
w

v
=
C
w
w

S
ince

disturbances
typically

have
m

ost
of

their
energy

at
low

frequencies,
the

eigenvalues
of
A
w

are
typically

in
the

origin
or

on
the

im
aginary

axis
(sinusoidaldisturbance)

2
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D
isturbance

E
stim

ation

A
ugm

ent
the

state
vector:



xw



G
ives

the
augm

ented
system

ddt



xw


=



A
C
w

0
A
w





xw


+



B0


u

y
=



C
0





xw



w
hich

is
sam

pled
into



x
(k
+
1
)

w
(k
+
1
)


=



Φ
Φ
x
w

0
Φ
w





x
(k
)

w
(k
)


+



Γ0


u
(k
)

y
=



C
0





x
(k
)

w
(k
)



2
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A
ugm

ented
O

bserver
and

S
tate

F
eedback

A
ugm

ented
observer:



x̂
(k
+
1
)

ŵ
(k
+
1
)


=



Φ
Φ
x
w

0
Φ
w





x̂
(k
)

ŵ
(k
)


+



Γ0


u
(k
)
+



KK
w


ǫ(k
)

w
ith

ǫ(k
)
=
y(k
)
−
C
x̂
(k
)

A
ugm

ented
state

feedback
controllaw

:

u
(k
)
=
−
L
x̂(k
)
−
L
w
ŵ
(k
)

If
possible,

select
L
w

such
that

Φ
x
w
−

Γ
L
w
=
0

2
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D
isturbance

E
stim

ation:B
lock

D
iagram

2
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D
isturbance

E
stim

ation:C
losed-Loop

S
ystem

T
he

closed-loop
system

can
be

w
ritten

x
(k
+
1
)
=
(Φ
−

Γ
L
)x
(k
)
+
(Φ
x
w
−

Γ
L
w
)w
+

Γ
L
x̃
(k
)
+

Γ
L
w
w̃

w
(k
+
1
)
=

Φ
w
w
(k
)

x̃
(k
+
1
)
=
(Φ
−
K
C
)x̃
(k
)
+

Φ
x
w
w̃
(k
)

w̃
(k
+
1
)
=

Φ
w
w̃
(k
)
−
K
w
C
x̃
(k
)

•
L

ensures
that

x
goes

to
zero

at
the

desired
rate

after
a

disturbance.

•
T

he
gain

L
w

reduces
the

effect
of

the
disturbance

v
on

the
system

by
feedforw

ard
from

the
estim

ated
disturbances

ŵ
.

•
K

and
K
w

influence
the

rate
at

w
hich

the
estim

ation
errors

go
to

zero.
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S
pecialC

ase:C
onstantInputD

isturbance

A
ssum

e
constant

disturbance
acting

on
the

plant
input:

•
v
=
w

•
Φ
w
=
1

•
Φ
x
w
=

Γ

If
w

e
choose

L
w
=
1

w
e

w
illhave

perfect
cancellation

of
the

load
disturbance

N
ew

controller
+

estim
ator

u
(k
)
=
−
L
x̂
(k
)
−
v̂(k
)

x̂
(k
+
1
)
=

Φ
x̂
(k
)
+

Γ
(

v̂(k
)
+
u
(k
)
)

+
K

ǫ(k
)

v̂(k
+
1
)
=
v̂(k
)
+
K
w
ǫ(k
)

ǫ(k
)
=
y(k
)
−
C
x̂
(k
)

3
0



S
pecialC

ase:B
lock

D
iagram

T
he

disturbance
estim

ator
is

integrating
the

prediction
error

of
the

observer.

T
he

overallcontroller
w

illhave
integralaction

(see
IFA

C
P

B
)

3
1

E
xam

ple
–

D
esign

•
C

ontrolof
double

integrator

d
x

d
t
=



0
1

0
0


x
+



01


u

y
=



1
0



x

•
S

am
ple

w
ith
h
=
0
.4
4

•
D

iscrete
state

feedback
designed

based
on

continuous-
tim

e
specification

ω
=
1,

ζ
=
0
.7

–
G

ives
L
=
[0
.7
3
1
.2
1
]

•
E

xtended
observer

assum
ing

constant
input

disturbance
to

obtain
integralaction;

allthree
poles

placed
in
z
=
0
.7
5.

3
2

E
xam

ple
–

S
im

ulation

3
3

O
ptim

ization-B
ased

D
esign

P
ole-placem

ent
design:

•
L

and
K

derived
through

pole-placem
ent

In
the

course
M

ultivariable
C

ontrol(F
lervariabelR

eglering),
L

and
K

are
instead

derived
through

optim
ization

•
LQ

(Linear
Q

uadratic)
and

LQ
G

(Linear
Q

uadratic
G

aus-
sian)

control

•
S

hort
overview

in
C

h
11

of
IFA

C
P

B

•
N

ot
part

of
this

course

3
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E
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M
atlab

>
>

A
=

[
0

1
;

0
0
]
;

>
>

B
=

[
0
;

1
]
;

>
>

h
=

0
.
4
4
;

>
>

%
S
a
m
p
l
e
d

s
y
s
t
e
m

m
a
t
r
i
c
e
s

>
>

[
P
h
i
,
G
a
m
m
a
]

=
c
2
d
(
A
,
B
,
h
)

>
>

%
D
e
s
i
r
e
d

p
o
l
e
s

i
n

c
o
n
t
i
n
u
o
u
s

t
i
m
e

>
>

o
m
e
g
a

=
1
;

z
e
t
a

=
0
.
7
;

>
>

p
c

=
r
o
o
t
s
(
[
1

2
*
z
e
t
a
*
o
m
e
g
a

o
m
e
g
a
^
2
]
)

>
>

%
C
o
r
r
e
s
p
o
n
d
i
n
g

d
e
s
i
r
e
d

d
i
s
c
r
e
t
e

p
o
l
e
s

>
>

p
d

=
e
x
p
(
p
c
*
h
)

>
>

%
D
e
s
i
g
n

s
t
a
t
e

f
e
e
d
b
a
c
k

>
>

L
=

p
l
a
c
e
(
P
h
i
,
G
a
m
m
a
,
p
d
)

>
>

%
D
e
s
i
g
n

a
u
g
m
e
n
t
e
d

o
b
s
e
r
v
e
r

>
>

P
h
i
e

=
[
P
h
i

G
a
m
m
a
;

z
e
r
o
s
(
1
,
2
)

1
]
;

>
>

C
e

=
[
C

0
]
;

>
>

K
e

=
a
c
k
e
r
(
P
h
i
e
’
,
C
e
’
,
[
0
.
7
5

0
.
7
5

0
.
7
5
]
)
’
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