
Lecture 1

[RTCS Ch. 1 & 2]

• Real-Time System Definitions

• Real-Time System Characteristics

• Real-Time System Paradigms

1

Real-Time Systems

“any information processing system which has to
respond to externally generated input stimuli within
a finite and specified period.”

“real-time systems are those in which the correctness
of the system depends not only on the logical results
of the computation but also on the time at which the
results are produced”

2

Definitions

A hard real-time system is a system where it is absolutely im-
perative that the responses occur within the required deadline.

• safety-critical applications

• e.g., aerospace, automotive,

A soft real-time system is a system where deadlines are
important but where the system still functions if the deadlines
are occasionally missed.

• e.g. multimedia, user interfaces, ...

3

Real-Time and Control

 Control
Engineering

 Computer
Engineering

Real−Time
 Systems

A Natural Connection

• All control systems are real-time systems

• Many hard real-time systems are control systems

4

Real-Time and Control

• Control engineers need real-time systems to implement
their systems.

• Computer Engineers need control theory to build ‘control-
lable’ systems

• Interesting research problems in the interface

5

Hard Real-Time Systems

The focus of this course.

Many (most??) hard real-time systems are real-time control
systems.

Most real-time control systems are not hard real-time systems.

Many hard real-time systems are safety-critical.

Common misconception:

• real-time = high-speed computations

• not true

• execute at a speed that makes it possible to fulfill the
timing requirements

6

Real-Time Control Systems

Many real-time systems are real-time control systems.
Controlled system

Sensors

Actuators

A/D

D/A

Operator
Interface

Communi−
cation

Computer
Control
System

Industrial
Process

Controller

• control algorithms

• process presentation

• operator communication

• data communication

7

Real-Time Control Systems

Two types of real-time control systems:

1. Embedded Systems

• dedicated control systems

• the computer is an embedded part of some piece of
equipment

• microprocessors, real-time kernels, RTOS

• aerospace, industrial robots, vehicular systems, ...

2. Industrial Control Systems

• distributed control systems (DCS), programmable logic
controllers (PLC), Soft-PLCs

• hierarchically organized, distributed control systems

• process industry, manufacturing industry, ...

8

9 10

11 12

Embedded Control Characteristics

• Limited computing and communication resources

– Often mass-market products, e.g., cars
– CPU time, communication bandwidth, energy, memory,

...

• Autonomous operation

– No human “operator” in the loop
– Several use-cases and complex functionality

∗ Often large amounts of software

– Need for formal guarantees

13

Embedded Control Characteristics

• Limited resources � Efficiency

– Code-size efficiency
– Run-time efficiency
– Energy efficiency
– Weight and size efficiency
– Cost efficiency

• Autonomous operation � Dependability

– Reliability
– Availability
– Safety
– Security
– Maintainability

14

A Typical Control Problem: The Buffer Tank

T

Q

L
1

L0

V

Raw material buffer + heating

Goals:

• Level control: open V when level below L0, keep the valve
open until level above L1

• Temperature control: PI-controller 15

Typical Characteristics

• Parallel activities.

• Timing requirements – more or less hard.

• Discrete and analog signals.

• Continuous (time-driven) control and Discrete (event-
driven), sequential Control

All control systems have these characteristics.

16

Continuous Time-Driven Control

Controller on continuous (analog form)

• e.g. PI-controller

u(t) = K ((yre f (t) − y(t)) +
1

Ti

∫ t

(yre f (τ) − y(τ))dτ)

Can be implemented in several ways, e.g., using analog
electronics

Here, we will assume that it is implemented using a computer.

How, should this be done?

17

Sampling - Control - Actuation

Frequently:

• Sampling of measured signal y(t)

• Calculation of control signal (software algorithm)

• Actuation of calculated control signal u(k)

In most cases periodically, i.e. driven by a clock (time)

18

Sampled-data control systems

Process

u t()

)

uk

y t(u t()

yk

SamplerHold

Computer
uk

yk

tt

t

y t()

t

D-A A-D

• Mix of continuous-time and discrete-time signals

• Discretization in time and in space

19

Networked control systems

uk

uk

ky

ky

Communication network

Computer

Process

y(t).
u(t)

t

.

and
D−A

Hold

Sampler

A−D
and

y(t)u(t)

. . . .
t

. .
.

t

t

• Extra delay, possibly lost packets

20

Design Approaches

Sampled control-design:

• Discrete-time design

• Use a model of the plant that only describes the behaviour
at the sampling instants – sampling the system

Approximation of a continuous-time design

• Design the controller assuming a continuous-time imple-
mentation

• Approximate this controller by a discrete-time controller

21

Ideal Controller Timing

y

 y(tk−1)

 y(tk)

 y(tk+1)

Time

u

 t k−1 t k tk+1

 u(tk− 1)

 u(t k)

Time

C
on

tr
ol

 V
ar

ia
bl

e
M

ea
su

re
d

V
ar

ia
bl

e

Computa-
tional
lag τ

• Output y(t) sampled periodically at time instants tk = kh

• Control u(t) generated after short and constant time delay τ

22

Real Controller Timing

y(t)

u(t)

rk−1 rk rk+1

Lk−1s Lk−1
io Lks Lk

io Lk+1s Lk+1
io

sk−1 fk−1 sk fk sk+1 fk+1

Rk−1 Rk Rk+1

τ

t

t

• Control task τ released periodically at time instances rk = kh

• Output y(t) sampled after time-varying sampling latency Ls

• Control u(t) generated after time-varying input-output latency Lio
23

Non-Deterministic Timing

Caused by sharing of computing resources

• multiple tasks sharing the CPU

• preemptions, blocking, priority inversion, varying computa-
tion times, ...

Caused by sharing of network bandwidth

• control loops closed over communication networks

• network interface delay, queuing delay, transmission delay,
propagation delay, resending delay, ACK delay, ...

• lost packets

How can we minimize the non-determinism?

How does the non-determinism effect control performance?
24

Discrete Event-Driven Control

Event-driven:

• wait for a condition to become true or an event to occur

• perform some actions

• wait for some new conditions

•

The event can be a clock-tick

Often modeled using state machine/automata-based for-
malisms

In many cases implemented using periodic sampling

25

Events

Real-Time systems must respond to events.

• Periodic events

• Non-periodic events

– aperiodic events

∗ unbounded arrival frequency

– sporadic events

∗ bounded arrival frequency

Events can be external or internal.

Each event requires a certain amount of processing and has a
certain deadline.

26

Parallelism

The real world is parallel

Events may occur at the same time.

The work that has to be done to service an event is called the
task associated with the event.

It is often natural to handle the different tasks independently
during design.

Temperature Loop Level Loop

while (true) {
 Measure temperature;
 Calculate temperature error;
 Calculate the heater signal with PI−control;
 Output the heater signal;
 Wait for h seconds;
}

while (true) {
 Wait until level below L0;
 Open inlet valve;
 Wait unitil level above L1;
 Close inlet valve;
}

27

Paradigms

Parallel (multi-core) programming:

Design
Level

Execution
Level

Concurrent Tasks

CPU

CPU

CPU

Program

Program

Program

28

Paradigms

Sequential programming:

Design
Level

Execution
Level

Manual interleaving

CPU

Cyclic Executive

Sequential Program

29

Interleaved temperature and
 level loops

while (true) {
 while (level above L0) {
 Measure temperature;
 Calculate temperature error;
 Calculate the heater signal with PI−control;
 Output the heater signal;
 Wait for h seconds;
 }
 Open inlet valve;
 while (level below L1) {
 Measure temperature;
 Calculate temperature error;
 Calculate the heater signal with PI−control;
 Output the heater signal;
 Wait for h seconds;
 }
 Close inlet valve;
}

Complex and non user-friendly code

Can, however, often be automated. 30

Static Sequential Approaches

Advantages:

• determinism

• a lot of different constraints can be ensured

• simple real-time computing platforms may be used

Disadvantages:

• inflexible

• generation of the sequential process can be a difficult
optimization problem

31

Paradigms

Concurrent programming:

Design
Level

Execution
Level

Concurrent Tasks

Concurrent Processes

CPU

The CPU is shared between the process (switches)

32

Real-Time Operating Systems:

• switches between processes

– Real-Time Kernel

• timing primitives

• process communication

33

Non real-time OS:

• polling (inefficient)

Polled Temperature Loop

Polling

while (true) {
 Measure temperature;
 Calculate temperature error;
 Calculate the heater signal with PI−control;
 Output the heater signal;
 counter = 0;
 while (counter < hcount) {
 INC(counter);
 }
}

34

Real-time OS:

• timing primitives and interrupts

• CPU free to service other tasks

Temperature Loop with Sleep

while (true) {
 Measure temperature;
 Calculate temperature error;
 Calculate the heater signal with PI−control;
 Output the heater signal;
 Sleep(h);
 }

35

Real-Time System Characteristics

• timing requirements

• must be deterministic and predictable

• worst-case response times of interest rather than average-
case

• large and complex

• distributed

• tight interaction with hardware

• safety critical

• execution is time dependent

• testing is difficult

• operating over long time periods

36

Real-Time Systems Course

In this course, as in most of industry, we will follow the concur-
rent programming paradigm.

Two different environments will be used during the lectures:

• Java

– concurrency through Java threads
– language used in projects

• STORK

– real-time kernel implemented in Modula-2
– close in nature to commercial real-time kernels and

real-time operating systems (OS)
– makes it possible to teach how a real-time kernel is

implemented
37

Java in Real-Time – NO

• Java was not developed for real-time applications.

• The just-in-time compilation in Java and the dynamic
method dispatching makes Java non-deterministic and
slow.

• The automatic garbage collection makes Java execution
non-deterministic.

• Java lacks many important real-time primitives.

38

Java in Real-Time – YES

• a nice concurrent programming language

• a nice object-oriented language

• a nice teaching language

• strong trends towards Real-Time Java

• many of the shortcomings of Java can be handled, e.g.,
the garbage collection problem

• Microsoft’s .NET and C# (a Java clone) will strongly
increase the industrial use in the near future

39

