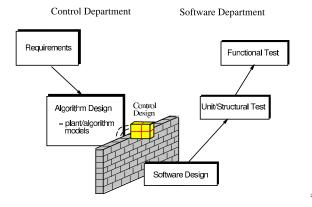
Lecture 15: Integrated Control and Scheduling

[These slides]

- 1. Introduction
- 2. Control task timing
- 3. Control analysis with delay and jitter
- 4. Control design to compensate for delay and jitter
- 5. Scheduling design to reduce delay and jitter
- 6. TrueTime: A MATLAB/Simulink-based simulator for real-time control systems

1. Introduction

Typical control system development today:



Problems

- The control engineer does not care about the implementation
 - "trivial"
 - "buy a fast computer"
- The software engineer does not understand controller timing
 - " $\tau_i = (T_i, D_i, C_i)$ "
 - "hard deadlines"
- Control theory and real-time scheduling theory have evolved as separate subjects for more than thirty years

In the Beginning...

Liu and Layland (1973): "Scheduling algorithms for multiprogramming in a hard-real-time environment."

- Rate-monotonic (RM) scheduling
- Earliest-deadline-first (EDF) scheduling
- Actually motivated by process control
 - Samples "arrive" periodically
 - Control response must be computed before end of period
 - "Any control loops closed within the computer must be designed to allow at least an extra unit sample delay."

Common Assumptions about Control Tasks

In the simple task model, a task τ_i is described by

- a fixed period T_i
- a fixed, known worst-case execution time C_i
- a hard relative deadline $D_i = T_i$

Is this model suitable for control tasks?

Fixed Period?

Not necessarily:

- · Some controllers are not sampled against time
 - Engine controllers
- Some controllers may switch between different modes with different sampling intervals
 - Hybrid controllers
- The sampling period could be on-line adjusted by a supervisory task ("feedback scheduling")

Fixed and Known WCET?

Not always:

- WCET analysis is a very hard problem
 - May have to use estimates or measurements
- Some controllers may switch between different modes with different execution times
 - Hybrid controllers
- Some controllers can explicitly trade off execution time for quality of control
 - "Any-time" optimization algorithms
 - Model-predictive controllers (MPC)
 - Long execution time \Rightarrow high quality of control

Hard Deadlines?

Most often not:

- Controller deadlines are often firm rather than hard
 - OK to miss a few outputs, but not too many in a row
 - Depends on what happens when a deadline is missed:
 - $\ast\,$ Task is allowed to complete late often OK
 - $\ast\,$ Task is aborted at the deadline worse
- At the same time, meeting all deadlines does not guarantee stability of the control loop

– $D_i = T_i$ is motivated by runability conditions only

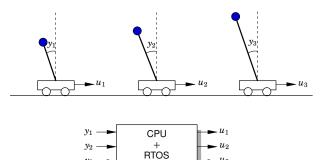
Inputs and Outputs?

Completely missing from the simple task model:

- When are the inputs (measurement signals) read?
 - Beginning of period?
 - When the task starts?
- When are the outputs (control signals) written?
 - When the task finishes?
 - End of Calculate Output?
 - End of period?

Inverted Pendulum Example

Control of three inverted pendulums using one CPU:



The Inverted Pendulum

A simple second-order model is given by

$$\frac{d^2y}{dt^2} = \omega_0^2 \sin y + u \,\omega_0^2 \cos y$$

11

where $\omega_0 = \sqrt{\frac{g}{l}}$ is the natural frequency of the pendulum.

Lengths $l = 1, 2, 3 \text{ cm} \Rightarrow \omega_0 = 31, 22, 18 \text{ rad/s}$

Control Design

Linearization around the upright equilibrium gives the state-space model

$$\frac{dx}{dt} = \begin{pmatrix} 0 & 1\\ \omega_0^2 & 0 \end{pmatrix} x + \begin{pmatrix} 0\\ \omega_0^2 \end{pmatrix} u$$
$$y = \begin{pmatrix} 1 & 0 \end{pmatrix} x$$

Digital controller: state feedback from observer w. direct term

• State feedback poles specified in continuous time as

$$s^2 + 1.4\omega_c s + \omega_c^2 = 0$$

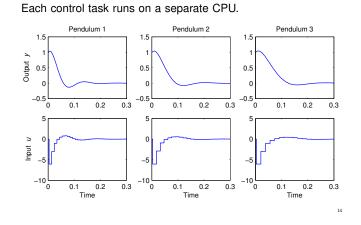
· Observer poles specified in continuous time as

$$s^2 + 1.4\omega_o s + \omega_o^2 = 0$$

Control Design

- State feedback poles: $\omega_c = 53, 38, 31 \text{ rad/s}$
- Observer poles: $\omega_o = 106, 75, 61 \text{ rad/s}$
- Sampling intervals: T = 10, 14.5, 17.5 ms
- Sampling at the beginning of the period, actuation at the end of execution
- Assumed execution time: C = 3.5 ms

Simulation 1 – Ideal Case



Schedulability Analysis

• Assume $D_i = T_i$

• S

- Utilization $U = \sum_{i=1}^{3} \frac{C_i}{T_i} = 0.79$
- Schedulable under EDF?

 $U < 1 \Rightarrow Yes$

13

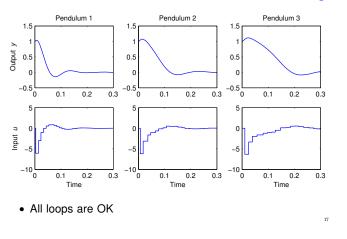
15

 $U>3(2^{1/3}-1)=0.78 \hspace{0.1in} \Rightarrow \hspace{0.1in} ext{Cannot say}$

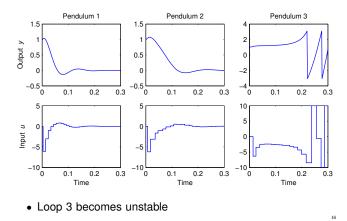
Must compute worst-case response times R_i :

Task	Т	D	С	R	
1	10	10	3.5	3.5	$\forall i: R_i < D_i \Rightarrow \text{Yes}$
2	14.5	14.5	3.5	7.0	$\forall i : M_i \leq D_i \Rightarrow \text{ les}$
3	17.5	17.5	3.5	14.0	

Simulation 3 – Earliest-Deadline-First Scheduling



Simulation 2 – Rate-Monotonic Scheduling



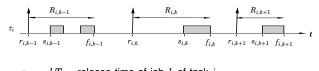
Questions

- How can a loop become unstable even though the system is schedulable?
- Why does EDF work better than RM in this example?

Need to study control loop timing

2. Control Task Timing

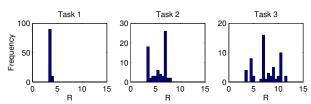
Periodic task executing in a multi-tasking system:



- $r_{i,k} = kT_i$ release time of job k of task i
- $s_{i,k}$ start time of job k of task i
- $f_{i,k}$ finish time of job k of task i
- $R_{i,k}$ response time of job k of task i
- $R_i = \max_k R_{i,k}$ worst-case response time of task i

Response Times in the Pendulum Example

Histograms of measured response times under EDF scheduling:



• Smaller variability for Task 3 compared to RM scheduling

3. Control Analysis with Delay and Jitter

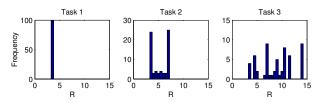
21

23

- · Constant delay in linear systems straightforward
- · Sampling and input-output jitter more difficult
 - Worst-case stability analysis
 - * Only input-output jitter
 - * Requires minimum and maximum values for the input-output latency
 - * Stability theorem by Kao and Lincoln
 - Average-case, stochastic performance analysis
 - * Requires a stochastic model of the latencies
 - * Jitterbug toolbox
 - Simulation
 - * TrueTime toolbox

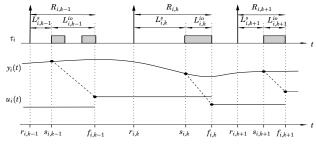
Response Times in the Pendulum Example

Histograms of measured response times during a 1-second simulation under rate-monotonic scheduling:



- The maximum values agree with the theoretical worst-case response times
- Under RM scheduling: low priority ⇒ large variability

Latency and Jitter in Control Tasks



- $L_{i,k}^{s}$ sampling latency of job k of task i
- $L_{i,k}^{io}$ input-output latency of job k of task i
- $J_i^s = \max_k L_{i,k}^s \min_k L_{i,k}^s$ sampling jitter of task *i*
- $J_i^{io} = \max_k L_{i,k}^{io} \min_k L_{i,k}^{io}$ input-output jitter of task i

Analysis of Constant Input-Output Delay

- · Delay decreases the phase margin
- Definition: the **delay margin** L_m is the maximum constant delay the loop can tolerate before it goes unstable
- Continuous-time systems:

$$L_m = \varphi_m / \omega_c$$

- This formula is only approximate for sampled control systems
- For sampled control systems, we must compute a root locus with respect to L to find the exact value of L_m

24

Approximate and Exact Delay Margins in the Pendulum Example

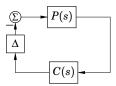
Controller	$arphi_m/\omega_c~({ m ms})$	L_m (ms)
1	9.15	9.17
2	12.92	12.95
3	15.84	15.88

Limitations of Analysis using Delay Margin

- Only holds for linear systems
- · Only holds for constant delays

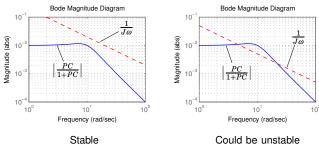
Jitter Margin – Stability under Input-Output Jitter

Stability theorem due to Kao and Lincoln (2004):



- Continuous-time plant P(s)
- Continuous-time controller C(s)
- Arbitrarily time-varying delay $\Delta \in [0, J]$
- Theorem: The closed-loop system is stable if

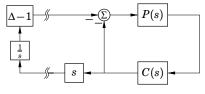
$$\left|\frac{P(i\omega)C(i\omega)}{1+P(i\omega)C(i\omega)}\right| < \frac{1}{J\omega} \quad \forall \omega \in [0,\infty].$$



(Note that the theorem gives a sufficient but not necessary condition for stability)

Proof Sketch

Uses nonlinear control theory. Rewrite the control output as one direct path and one error path:



Gain of left part: J

Gain of right part: $\max_{\omega} \left| \frac{i\omega P(i\omega)C(i\omega)}{1 + P(i\omega)C(i\omega)} \right|$ The result follows from the Small Gain Theorem Stability Under Jitter – Sampled Control Case

The sampled control case is more complicated.

Assume continuous-time plant P(s), discrete-time controller C(z) and input-output jitter $J \leq h$.

The closed-loop system is stable if

$$\left|\frac{P_{\mathrm{alias}}(\omega)C(e^{i\omega})}{1+P_{\mathrm{ZOH}}(e^{i\omega})C(e^{i\omega})}\right| < \frac{1}{\sqrt{J}|e^{i\omega}-1|}, \quad \forall \omega \in [0,\pi]$$

where

•
$$P_{\text{alias}}(\omega) = \sqrt{\sum_{k=-\infty}^{\infty} \left| P\left(i(\omega + 2\pi k)\frac{1}{h}\right) \right|^2}$$

• $P_{\rm ZOH}(z)$ is the ZOH-discretization of P(s)

27

Jitter Margins in the Pendulum Example

Definition: the **jitter margin** J_m be the largest jitter such that the closed-loop system is still guaranteed to be stable.

Delay margins and jitter margins for the pendulums:

Controller	L_m (ms)	$J_m~({ m ms})$
1	9.17	8.30
2	12.95	11.72
3	15.88	14.37

Limitations of Analysis using the Jitter Margin

- Only holds for linear systems
- · Assumes zero sampling jitter
- Only uses knowledge of the minimum and maximum inputoutput latencies
- · Does not exploit any statistical properties about the jitter

Jitterbug

31

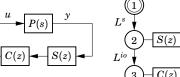
33

- Matlab toolbox for stochastic control analysis (Lincoln and Cervin, 2002)
- Random delays in the control loop described by probability distributions
- System disturbed by white noise
- · Performance measured by quadratic cost function

 $V = \mathbf{E} \ x^T Q x$

- Small $V \Leftrightarrow$ good performance
- $V = \infty \Leftrightarrow$ unstable control loop

Jitterbug Model – Example

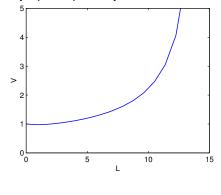


- P(s) process
- S(z) sampler, C(z) controller and actuator
- L_s, L_{io} latency distributions (random variables)
- Cost function: $V = E y^2$

Jitterbug – Example Script

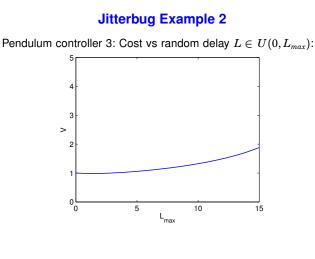
dt = h/5; PLs = [0.2 0.2 0.6 0 0 0]; PLio = [0.5 0 0 0 0 0.5];	% time granularity % distribution of Ls % distribution of Lio
<pre>N = initjitterbug(dt,h);</pre>	
N = addtimingnode(N,1,PLs,2)); % node 1
<pre>N = addtimingnode(N,2,PLio,)</pre>	3); % node 2
<pre>N = addtimingnode(N,3);</pre>	% node 3
<pre>N = addcontsys(N,1,plant,3,</pre>	Q,R1,R2); % plant
<pre>N = adddiscsys(N,2,1,1,2);</pre>	% sampler in node 2
<pre>N = adddiscsys(N,3,ctrl,2,3)</pre>); % controller in node 3
<pre>N = calcdynamics(N);</pre>	
V = calccost(N)	

Pendulum controller 3: Evaluate cost for different values of constant delay input-output delay *L*:



36

32



Limitations of Analysis using Jitterbug

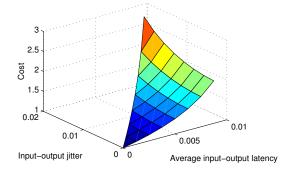
37

41

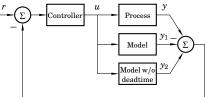
- · Only holds for linear systems
- · Very simplistic stochastic model with independent random delays
- · Calculates the average-case performance

Jitterbug Example 3

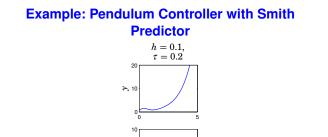
Pendulum controller 3: Cost vs average I-O delay and I-O jitter



4. Control Design to Compensate for Delay and **Jitter**

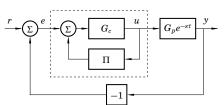


Classical Smith predictor for delay compensation:



- The controller thinks that it is doing the right thing
- · Based on feedforward rather than feedback

Delay Compensation – More General



Design procedure:

- Design controller G_c for delay-free process G_p
- · Add compensator

$$\mathrm{I}(s) = ilde{G}_p(s) - G_p(s)e^{-it}$$

-sτ

to cope with deadtime process $G_p e^{-s\tau}$

I

Problem: Only works if the process model is stable

42

40

Many Different Compensators Have Been Proposed

• Smith predictor:

 $ilde{G}_p(s) = G_p(s)$

• Watanabe-Ito predictor:

$$ilde{G}_p(s)=Ce^{A au}(sI-A)^{-1}B-C\int_0^{t}e^{-As}dsB$$

- Guarantees that the controller retains integral action
- . . .

Better – Digital Design

- Include the delay in the process description
- · Sample the process with the delay
- Design a controller for the sampled system
 - A simple option is to place the extra poles in the origin
 - * Corresponds to the observer-predictor
 - * Might be too aggressive
 - Try to respect the rule of thumb

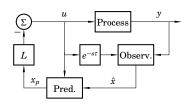
 $\omega(h+2\tau)=0.1$ to 0.5

where ω is the bandwidth of the closed-loop system

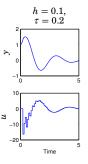
Observer–**Predictor**

In a state feedback-observer structure, delay control signal to the observer and compute the feedback from a predicted state:

$$\begin{aligned} \frac{d\hat{x}(t)}{dt} &= A\hat{x}(t) + Bu(t-\tau) + K\left(y(t) - C\hat{x}(t)\right) \\ x_p(t) &= e^{A\tau}\hat{x}(t) + \int_{t-\tau}^t e^{A(t-s)}Bu(s)ds \\ u(t) &= -Lx_r(t) \end{aligned}$$



Pendulum Controller with Delay Compensation using Digital Design



• Shaky response, but stable

• $\omega(h + 2\tau) = 1.4$

Coping with Jitter

Three approaches

- Ignore the jitter
- Design a robust controller
- Design a controller that actively compensates for the jitter in each sample
 - Requires that the latencies are measured
 - Problem: the input-output latency in the current sample is not known when the control signal is computed

47

Coping with Input-Output Jitter

Sampled model with varying delay τ_k :

$$x(k+1) = \Phi x(k) + \Gamma_0(\tau_k)u(k) + \Gamma_1(\tau_k)u(k-1)$$

· Design the feedback

$$u(k) = -L \left(egin{array}{c} \hat{x}(k) \\ u(k-1) \end{array}
ight)$$

based on the average (expected) input-output delay

Modify the observer to take into account current delay τ_k:

 $\hat{x}(k+1) = \Phi \hat{x}(k) + \Gamma_0(\tau_k)u(k) + \Gamma_1(\tau_k)u(k-1) + K(y(k) - C\hat{x}(k))$

Similar techniques can be used for sampling jitter

48

5. Scheduling Design to Reduce Delay and Jitter

A control algorithm normally consists of two parts:

```
while (1) {
   read_input();
   calculate_output();
   write_output();
   update_state();
   ...
}
```

Idea: schedule the two parts as separate tasks

- input, calculate, output high priority
- update low priority

A Deadline Assignment Algorithm

Assume we have a number of control tasks that can be divided into Calculate Output and Update State.

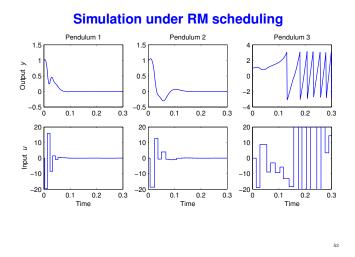
- 1. Start by assigning initial deadlines
 - $D_{CO} := T C_{US}$
 - $D_{US} := T$

for all tasks.

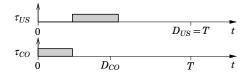
2. Assign deadline-monotonic priorities to all subtasks

51

- 3. Calculate the response time R of each subtask
- 4. Assign $D_{CO} := R_{CO}$ for all tasks
- 5. Repeat from 2 until no further improvement.



Subtask Scheduling Analysis



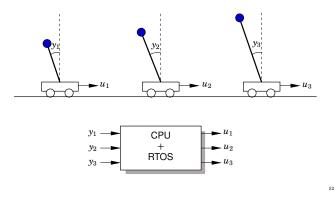
- Calculate Output (τ_{CO}) should have as short deadline as possible
- Update State (τ_{US}) can have deadline $D_{US} = T$.

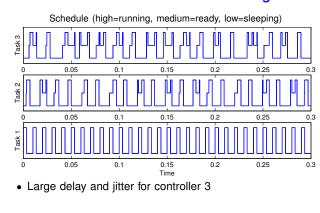
Inverted Pendulum Example (Again)

50

54

Control of three inverted pendulums using one CPU:





Simulation under RM scheduling

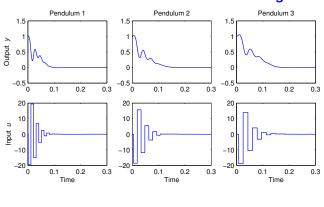
Subtask Scheduling Analysis

Each pendulum controller is divided into two subtasks:

- Calculate output: $C_{CO} = 1.5 \text{ ms}$
- Update state: $C_{US} = 2.0 \text{ ms}$

First iteration of algorithm:

	Т	D	C	R
$ au_{CO1}$	10.0	8.0	1.5	1.5
$ au_{US1}$	10.0	10.0	2.0	3.5
$ au_{CO2}$	14.5	12.5	1.5	5.0
$ au_{US2}$	14.5	14.5	2.0	7.0
$ au_{CO3}$	17.5	15.5	1.5	8.5
$ au_{US3}$	17.5	17.5	2.0	14.0



6. The TrueTime Simulator

- MATLAB/Simulink toolbox by Henriksson, Cervin, Ohlin, Eker (1999–2008)
- TrueTime supports co-simulation of control task execution, network communication, and plant dynamics
 - Simulink blocks model real-time kernels and communication networks
 - The kernels execute user code (tasks and interrupt handlers) written in C++ or MATLAB code
 - The simulated application is programmed in much the same way as a real application

Subtask Scheduling Analysis

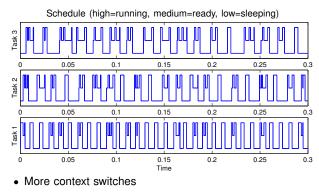
Third iteration (converged):

	T	D	С	R
$ au_{CO1}$	10.0	1.5	1.5	1.5
$ au_{US1}$	10.0	10.0	2.0	6.5
$ au_{CO2}$	14.5	3.0	1.5	3.0
$ au_{US2}$	14.5	14.5	2.0	8.5
$ au_{CO3}$	17.5	4.5	1.5	4.5
$ au_{US3}$	17.5	17.5	2.0	14.0

New worst-case input-output latencies: 1.5, 3.0, 4.5 ms.

56

58



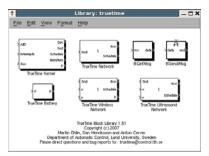
Why Co-Simulation?

- Networked embedded systems are very complex systems
- Nonlinear system dynamics
- Temporal nondeterminism
 - preemption by higher-priority tasks, blocking, varying computation times, kernel overhead, ...
 - network interface delays, queuing delays, transmission and retransmission delays, lost packets, ...

59

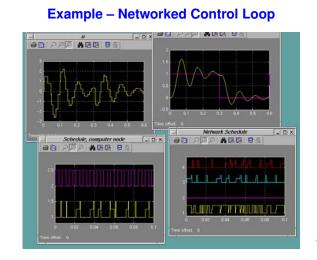
55

The TrueTime Block Library



• A Kernel block, three Network blocks, and a Battery block

- Simulink S-functions written in C++
- Event-based execution using zero-crossing functions
- Portable to other simulation environments

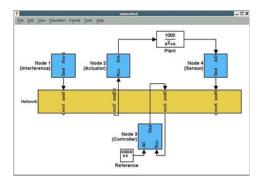


Example of Kernel Initialization Script

```
nbrInputs = 3;
nbrOutputs = 3;
ttInitKernel(nbrInputs, nbrOutputs, 'prioFP');
periods = [0.01 0.02 0.04];
code = 'my_ctrl';
for k = 1:3
    data.u = 0;
    taskname = ['Task ' num2str(k)];
    offset = 0;
    period = periods(k);
    prio = k;
    ttCreatePeriodicTask(taskname,offset,period,prio,code,d
ata);
end
```

6

Example – Networked Control Loop



62

The Kernel Block

- Simulates a generic real-time kernel with A/D-D/A and network interfaces
- Executes user-defined tasks and interrupt handlers
- Supports various scheduling policies
- Supports all common real-time primitives (timers, monitors, semaphores, mailboxes, dynamic task attributes, ...)
- More features: context switch overheads, overrun handlers, data logging, ...

Code Functions

- Each task or interrupt handler in the user application must be implemented in a code function
- The code function is called repeatedly by the kernel during the simulation
 - The simulated execution time is returned by the function
- Three options for the implementation:
 - C++ code (fast)
 - MATLAB code (medium)
 - Simulink block diagram (slow)

Example of a MATLAB Code Function

```
function [exectime,data] = my_ctrl(segment,data)
switch segment,
   case 1,
      data.y = ttAnalogIn(1);
      data.u = calculate_output(data.x,data.y);
      exectime = 0.002;
   case 2,
      ttAnalogOut(1,data.u);
      data.x = update_state(data.x,data.y);
      exectime = 0.004;
   case 3,
      exectime = -1;
end
```

The Wired Network Block

- Supports six common MAC layer policies:
 - CSMA/CD (Ethernet)
 - CSMA/AMP (CAN)
 - Round Robin (Token bus)
 - FDMA
 - TDMA
 - Switched Ethernet
- Policy-dependent network parameters
- Generates a transmission schedule

,	Snd	1	Rev Schedule
	True	Time	Network

Diock Parameters: TrueTime Nelson	
eal-Time Network (mask) (link)	
anameters	
ietwork type Switched Ethernet	
ietwork number	
lumber of nodes	
(pratia) etter atte	
000000	
Animum Itamo size (bytes)	
и	
ore probability (9-1)	
)	
latified the shock table	
(月11日)	_
kinita dişteliy	3
4	
Syster schalarter	
	-
fotal switch memory (bytes)	9
1000000 mm	-
Dwitch buffer type Common Buffer	
livelich overflow behavior Retransmit	
OK Cancel Help Apply	

The Wireless Network Block

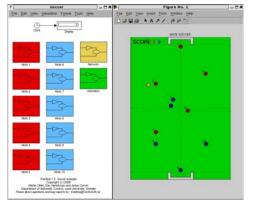
- Used in basically the same way as the wired network block
- Supports two common MAC layer policies:
 - 802.11b/g (WLAN)
 - 802.15.4 (ZigBee)
- Variable network parameters
- x and y inputs for node locations
- Generates a transmission schedule

Parameters —	
Network type	802.15.4 (ZigBee)
Network Numb	100
1	
Number of not	des
6	
Data rate (bits	/4)
250000	
Minimum frame	e size (bytes)
31	
Transmit powe	rr (dbm)
-3	
	al threshold (dbm)
-48	
	nent (1/distance"x)
3.5	
ACK timeout (5)
0.000864	
Retry limit	
3	
Error coding th	hreshold
0.03	
OK Ca	ancel Help Apply

67

TrueTime Demo: Robot Soccer

• 5+5 mobile robots communicating over a wireless network



70