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The Simple Feedback Loop
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- Reference value r
- Control signal u
- Measured signal/output y

The problem/purpose: Design a controller such that the output
follows the reference signal as good as possible
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The problem/purpose: Design a controller such that the output
follows the reference signal as good as possible

Note on terminology: Process, Controlled system, Plant etc...



The Feedback Loop

Disturbances
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- Reference value r
- Control signal u
- Measured signal/outputy

The problem/purpose: Design a controller such that the output
follows the reference signal as good as possible despite
disturbances and uncertainties in process.



Find the Control Problem -1




Find the Control Problem -1

- Reference value - Desired temperature

- Control signal - E.g,, power to the AC, amount of hot water to the
radiators

- Measured value - The temperature in the room



Find the Control Problem - 2




Find the Control Problem - 2

- Reference value - Desired speed
- Control signal - Amount of gasoline to the engine

- Measured value - The speed of the car



Find the Control Problem - 3




Find the Control Problem - 3

- Reference value - Number of bacterias
- Control signal - “Food” (sugar and O,)

- Measured value - E.g., pH or oxygen level in the tank



Some systems can operate well without feedback, i.e., in open loop.

Disturbances
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Examples of open loop systems?



Feedforward vs. Feedback

Benefits with feedback:

- Stabilize unstable systems
- The speed of the system can be increased
- Less accurate model of the process is needed

- Disturbances can be compensated

- WARNING: Stable systems might become unstable with feedback



Feedforward vs. Feedback

Benefits with feedback:

- Stabilize unstable systems
- The speed of the system can be increased
- Less accurate model of the process is needed

- Disturbances can be compensated

- WARNING: Stable systems might become unstable with feedback

Feedforward and feedback are complementary approaches, and a
good controller typically uses both.



The PID Controller




The Error

The input to the controller will be the error, i.e,, the difference
between the reference value and the measured value.

e=r—y
r u Yy
—»| Controller »| Process >
VN
New block scheme:
r e u y
Controller »| Process >




On/Off Controller

. Unax ife>0
Unin ife<0

Umax

Umm

Usually not a good controller. Why?



The P Part

Idea: Decrease the controller gain for small control errors.

P-controller:

Ui if e > eq
U=4qug+Ke if —egy<e<eg
Unsiz ife < —ey
u
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P-part comes from proportional (here affine) to the error e. 14



The P Part

Idea: Decrease the controller gain for small control errors.

P-controller:

Uigagsa if e > eq
U= uUg+Ke if —eg<e<e
Unsiz ife < —ey
The control error
u— Ug
N K

To have e = 0 at stationarity, either:

c Up=Uu

- K=o

14



The P Part

Idea: Decrease the controller gain for small control errors.

P-controller:

Ulaers if e > eq
U=<Ug+Ke if —eg<e<eg
Unsiz ife < —ey
The control error
u— Ug
K

To have e = 0 at stationarity, either:

- Up = u (What if u varies?)
- K = oo (On/off control)

14



The | Part

Idea: Adjust up automatically to become u.

MU:K(%/Eﬁmr+Q

Compared to the P-controller, now

Pl-controller:

%m:%/emw

At stationary e = 0 if and only if r = y.

Pl controller achieves what we want, if performance requirements
are not extensive.



Example of integral action needed — mini-problem (5 min)

System setup:
Measurement: Ultrasound sensor;

m measures echo to determine
height of ball in tube
Reference level
(desired height) ) Arduino

Algorithm:
Loop {
* Read from time from ultrasound sensor
i - + Convert ‘echo time’ — distance
tF’ulgélglass - Compare with desired height (reference)
- Compute control signal to fan motor
based on error

Actuation: Fan motor generates air flow
to keep table tennis ball

(a) Argue why there will be a stationary value if we just use P-control; i.e.,
u(t) = K- (hyer — h)?
(b) How will the stationary value change with the value of the gain K?

(c) What happens if we add integral action with very small gain %? Sketch
the behaviour. I 16



Answer mini-problem

Note: This is not a strict answer and you need to make reasonable
assumptions about the process yourself for this to hold.

(a) Argue why there will be a stationary value if we just use P-control; i.e,
u(t) = K- (hees — h)?
If h = hs the control signal u(t) = K- (hyf —h) = 0 and the motor
shuts off/fan stops spinning and the ball will fall. The process will
finally settle to an equilibrium with a positive stationary error
e = hyer — h such that the corresponding control signal will keep the
ball at a fixed error (e) from the reference.

(b) How will the stationary value change with the value of the gain K?
The control signal to the fan motor u = K - e is the product of the gain
and the error; for a higher gain K you can reach stationarity with a
smaller stationary error e.



Answer mini-problem, cont’d

(c) What happens if we add integral action with very small gain —7? Sketch

the behaviour.

See also separate simulink example/demo.



The D Part

Idea: Speed up the Pl-controller by “looking ahead”/"predicting
future”.

PID-controller:

1/ de
=K — dr 4+ Tg—
u (e+Ti/e(T)T+ ddt>

e e Same P- and I-part
in both cases, but
very different be-
havior of error. The
derivative of e con-
Time Time tains a lot of infor-
t t mation to utilize.
- P acts on the current error,
- | acts on the past error,

- D acts on the "future”/predicted error. 1



State Space Models




State Space Models

Consider a linear differential equation of order n

dn dn1 dn dn1
AT —s—athn ¥+...+any bod +b1dt” - + ...+ bpu

For linear systems the superposition principle holds:

U=u =y=yand
U=u, =y=y, implies

U=CG -+ -l —=Y=C -1+ V2

and vice versa; We can consider the output from a sum of signals by
considering the influence from each component.

21



State Space Models

Consider a linear differential equation of order n

dn dn1 dn dn1
AT —s—athn ¥+...+any bod +b1dt” - + ...+ bpu

For linear systems the superposition principle holds:

u=u; —y=y;and
U=u, =y=y, implies
U=CG -+ -l —=Y=C -1+ V2

and vice versa; We can consider the output from a sum of signals by
considering the influence from each component.

Q: Why is this not true for nonlinear systems? Example?

21



State Space Models

Consider a linear differential equation of order n

dn dn—W dn dm—W
y+a1 y+...+any:bo U—I—bw u

dtr qtn— dtr gt Tt

22



State Space Models

Consider a linear differential equation of order n

dn dn—W dn dm—W
y+a1 y+...+any:bo U—I—bw u

dtr qtn— dtr gt Tt

An altenative to ONE differenial quation of order n' is to write it as a
system of n coupled differential equations, each or order one.

22



State Space Models

Consider a linear differential equation of order n

d"y d"y . du d""'u
gor T g T Ay = Do+ b

+ ...+ bpu

An altenative to ONE differenial quation of order n' is to write it as a
system of n coupled differential equations, each or order one.
State space representation:

5(1 =S f1()(17 X2, ... Xn, U)
)'(2 = fz()(17 X2, ...Xn, U)

Xn = fa(X1, X2, .. Xp, U)
y  =8(Xq, Xz, ... Xn, U)

The last row is a (linear) equation relating the states (x), the input u,

and the outputy.
22



State Space Models

Consider a linear differential equation of order n
d"u
dtn

d"y
dtn

+ & dfn—1

dn—W
y+...+any:b0

=+ b

d"""u
dtnfﬁ

...+ bpu

An altenative to ONE differenial quation of order n' is to write it as a
system of n coupled differential equations, each or order one.

State space representation:

Xq

X
Xn
y

= anXq + ... + anXn + bu
= anX1+ ... + amnXn + bou

= amX1 + ... + amXn + bnu
= C1X1 + 6&Xo + ... + CpXp + du

X
%

Xn

an
a1

an1

= [q

an
axn

an2

Q

ain X1 b,
azn X2 b,
+ u
d1nn Xn bn
X1
X
Cn) 2| +du

23



State Space Models

Consider a linear differential equation of order n

dn dn—W dn dm—W
y+a1 y+...+any:bo U—I—bw u

dtr qtn— dtr gt Tt

An altenative to ONE differenial quation of order n' is to write it as a
system of n coupled differential equations, each or order one.

State space representation:

. X an  an an X1 by
X1 = anXqy + ... + amXn + biu X2 _ | an X2 " b, u
X2 = anXq + ... + dnXn + bou .

Xn an1 an2 dinn Xn bn
. y
Xn = amX1 + ... + anmnXn + bnu =

y=[a o .. a + du

Yy =X+ X+ ...+ ChXxo +du

Xn

NOTE: Only states (x) and inputs (u) are allowed on the right hand side in
Eq.-system above (in fand g) for it to be called a state-space representation! 23



State Space Models

——»| Process b—»

Linear dynamics can be described in the following form

X = Ax + Bu
y = Cx(+Du)

Here x € R" is a vector with states. States can have a physical
"interpretation”, but not necessary.

In this course u € R and y € R will be scalars.

(For MIMO systems, see Multivariable Control (FRTN10))

24



Example

Example

The position of a mass m controlled by a force u is described by
mX = u

where x is the position of the mass.

u
m —

777777777777777777777777777777777
V1707207 7777777777777777777777777.
Y Y Y

Introduce the states x; = x and x, = x and write the system on state
space form. Let the position be the output.

25



Dynamical Systems

Continous Time Discrete Time
(sampled)
Linear This course Real-Time Systems
(FRTNO1)

Nonlinear | Nonlinear Control and
Servo Systems (FRTNO5)

Next lecture: Nonlinear dynamics can be linearized.

26
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