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Feedback – The Steam Engine



Control in the Old Days
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The Uncontrolled Steam Engine

Steam engine+
Md

−Ml

ω

Model:

Jω̇ + Dω = Md −Ml

The stationary angular speed:

ωs =
Md −Ml

D
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The Uncontrolled Steam Engine

Step response:

ω(t) =
Md −Ml

D

(
1− e−Dt/J

)
= ωs

(
1− e−Dt/J

)
Time constant:

T =
J

D
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P Control of the Steam Engine

Steam engine+Controller+

−1

ωr

−Ml

Md ω

Proportional control:

Md = K (ωr − ω)
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P Control of the Steam Engine

Dynamics with P-controller:

Jω̇ + Dω =

Md︷ ︸︸ ︷
K (ωr − ω)−Ml

or

Jω̇ + (D + K )ω = Kωr −Ml

In stationarity (ω̇ = 0):

ωs =
K

D + K
ωr −

1

D + K
Ml

Step response (ω(0) = 0):

ω(t) =
Kωr −Mb

D + K

(
1− e−(D+K)t/J

)
= ωs

(
1− e−(D+K)t/J

)
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P Control of the Steam Engine
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PI Control of the Steam Engine

Introduce a PI-controller to get rid of the stationary error:

Md = K (ωr − ω) +
K

Ti

∫ t

0

(ωr − ω)dt

Dynamics:

Jω̇ + Dω = K (ωr − ω) +
K

Ti

∫ t

0

(ωr − ω)dt −Ml

Jω̈ + Dω̇ = K (ω̇r − ω̇) +
K

Ti
(ωr − ω)− Ṁl

At stationarity (ω̇r = 0, Ṁl = 0):

ωs = ωr
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PI Control of the Steam Engine
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PI Control of the Steam Engine

The Laplace transformation of the dynamics

Jω̈ + Dω̇ = K (ω̇r − ω̇) +
K

Ti
(ωr − ω)− Ṁl

is

s2Jω + sDω = K (sωr − sω) +
K

Ti
(ωr − ω)− sMl

The characteristic equation (the equation to determine the poles) is:

s2 +
D + K

J
s +

K

J Ti

= 0

By choosing K and Ti , we can place the poles of the closed loop

dynamics arbitrarily.
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Stability



Stability - Definitions

A system on state space form

ẋ = Ax + Bu

y = Cx + Du

is

Asymptotically stable if x(t)→ 0 when t → +∞ for all initial states

x(0) when u(t) = 0.

Stable if x(t) is bounded for all t and all initial states x(0) when

u(t) = 0.

Unstable if x(t) grows unbounded for an initial state x(0) when

u(t) = 0.
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Stability - Scalar Case

For the scalar case

ẋ(t) = ax(t)

x(0) = x0

the solution is:

x(t) = x0e
at

Hence

a < 0 Asymptotically stable

a = 0 (marginally) Stable

a > 0 Unstable
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Stability - Scalar Case

0 2 4 6 8 10

0

0.5

1

1.5

2

a < 0

a = 0

a > 0

t

y
(t
)

10



Stability - Diagonal Case

ẋ(t) =

A︷ ︸︸ ︷
a1 0

a2
. . .

0 an

 x(t)

x(0) = x0

Every state variable corresponds to the scalar case:

ẋi (t) = aixi (t)

In fact the ai ’s are eigenvalues of A. The system is

Asymptotically stable if all the eigenvalues of A have negative real part

Unstable if at least one of the eigenvalues of A has a positive real part

(marginally) Stable if all the eigenvalues of A have either negative or

zero real part 11



Stability - General Case

For a general A-matrix, i.e., not necessarily a diagonal one, the stability

rule still holds with one exception. That the eigenvalues have zero real

part does not always guarantee stability, unless the purely imaginary

eigenvalues are unique.
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Stability - Transfer Function

Recall from Lecture 2 that the eigenvalues of the A matrix are poles to

the transfer function. Hence, if all the poles have negative real part the

system is stable.

A second order polynomial

s2 + a1s + a2

has its roots in the left half plane if and only if a1 > 0 and a2 > 0.

A third order polinomial

s3 + a1s
2 + a2s + a3

has its roots in the left half plane if a1 > 0, a2 > 0, a3 > 0 and

a1a2 > a3
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Stability - Example

Example

Determine if the systems below are asymptotically stable or not

a)

G (s) =
1

(s2 + s + 1)(s + 1)

b)

ẋ =

[
−2 2

0 −3

]
x +

[
1

1

]
u

y =
[
2 −1

]
x + 2u
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Root Locus

Idea: Study graphically how the poles move with the change of a

parameter

Q(s)

P(s)
K+

−1

r y

Y (s) =
KQ(s)

P(s) + KQ(s)
R(s)

Characteristic equation:

P(s) + KQ(s) = 0
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Root Locus

Characteristic equation:

P(s) + KQ(s) = 0

For K = 0 the characteristic equation becomes:

P(s) = 0

When K →∞, the characteristic equation becomes:

Q(s) = 0

I.e., the poles of the closed loop system will approach the zeros of the

closed loop system.

If there are more poles than zeros, the remaining poles will approach

infinity (in magnitude).
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Root Locus - Second Order System

Let
Q(s)

P(s)
=

1

s(s + 1)

Characteristic equation of the cloosed loop:

P(s) + KQ(s) = s(s + 1) + K = 0

s = −1

2
±
√

1

4
− K

When K = 0, poles in 0, −1.

When K > 1/4, complex pair of poles with real part −1/2. The

imaginary parts go towards ±∞ when K →∞.
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Root Locus - Second Order System
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Root Locus - Third Order System

Let
Q(s)

P(s)
=

1

s(s + 1)(s + 2)

Characteristic equation of the closed loop:

P(s) + KQ(s) = s(s + 1)(s + 2) + K = s3 + 3s2 + 2s + K = 0
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Root Locus - Third Order System
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Root Locus - Third Order System
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Root Locus - Third Order System
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Root Locus - Third Order System
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Root Locus - Third Order System

−3 −2 −1 0
−2

−1

0

1

2

Re

Im

Singularity Chart

0 10 20

0

0.5

1

1.5

2

t

y
(t
)

Step response K = 3

17



Root Locus - Third Order System

−3 −2 −1 0
−2

−1

0

1

2

Re

Im

Singularity Chart

0 10 20

0

0.5

1

1.5

2

t

y
(t
)

Step response K = 6

17



Root Locus - Third Order System
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Stationary Errors



The Servo Problem and The Regulator Problem

GP+GR+

−1

r e y

l

Y =
GRGP

1 + GRGP
R +

GP

1 + GRGP
L

The Servo Problem Set point tracking, l = 0.

The Regulator Problem Effect of load disturbances, r = 0.
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Stationary Errors - The Servo Problem

E (s) = R(s)− Y (s) =
1

1 + GR(s)GP(s)︸ ︷︷ ︸
G0(s)

R(s)

We can use the final value theorem to determine the error

e∞ = lim
t→+∞

e(t) = lim
s→0

sE (s)

but only if sE (s) has it poles in the left half plane.
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Stationary Errors - The Servo Problem - Example

Let the process and controller be:

GP =
1

s(1 + sT )
GR = K

Open-loop transfer function:

G0 = GRGP =
K

s(s + sT )

The control error is given by:

E (s) =
1

1 + G0(s)
R(s) =

s(1 + sT )

s(1 + sT ) + K
R(s)
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Stationary Errors - The Servo Problem - Example

The control error is given by:

E (s) =
1

1 + G0(s)
R(s) =

s(1 + sT )

s(1 + sT ) + K
R(s)

Let r(t) be a step, i.e.,

r(t) =

{
1 if t ≥ 0

0 if t < 0
R(s) =

1

s

Then (given that T and K are positive)

e∞ = lim
t→+∞

e(t) = lim
s→0

sE (s) = lim
s→0

s · s(1 + sT )

s(1 + sT ) + K
· 1

s
= 0
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Stationary Errors - The Servo Problem - Example

The control error is given by:

E (s) =
1

1 + G0(s)
R(s) =

s(1 + sT )

s(1 + sT ) + K
R(s)

Let r(t) be a ramp, i.e.,

r(t) =

{
t if t ≥ 0

0 if t < 0
R(s) =

1

s2

Then (given that T and K are positive)

e∞ = lim
t→+∞

e(t) = lim
s→0

sE (s) = lim
s→0

s · s(1 + sT )

s(1 + sT ) + K
· 1

s2
=

1

K
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Stationary Errors - The Servo Problem - Example

0 1 2 3 4 5

0
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t

y(t)

r(t)

Question to the audience: What value of K is used?
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Stationary Errors - The Servo Problem - General Case

Open loop transfer function:

G0(s) =
K

sn
· 1 + b1s + b2s

2 + . . .

1 + a1s + a2s2 + . . .
e−sL =

KB(s)

snA(s)
e−sL

Setpoint (m non-negative integer):

r(t) =

{
tm

m! if t ≥ 0

0 if t < 0
R(s) =

1

sm+1

Error (given that the limit exsists):

e∞ = lim
t→+∞

e(t) = lim
s→0

snA(s)

snA(s) + KB(s)e−sL
· 1

sm+1
= lim

s→0

1

sn + K
sn−m

The stationary error is determined by the low-frequency properties of the

transfer function and the set point.
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Stationary Errors - The Servo Problem - General Case

G0(s) =
K

sn
· 1 + b1s + b2s

2 + . . .

1 + a1s + a2s2 + . . .
e−sL =

KB(s)

snA(s)
e−sL

r(t) =

{
tm

m! if t ≥ 0

0 if t < 0

The relation between m and n gives the following errors:

n > m e∞ = 0

n = m = 0 e∞ = 1
1+K

n = m ≥ 1 e∞ = 1
K

n < m Limit does not exist.
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Stationary Errors - The Regulator Problem

The transfer function between a load disturbance l(t) and measurement

signal y(t):

Y (s) =
GP(s)

1 + GR(s)GP(s)
L(s)

Since r = 0, we can study the measurement signal instead of the error:

y∞ = lim
t→+∞

y(t) = lim
s→0

sY (s)

Again, we have to ensure that the limit exsists.
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Stationary Errors - The Regulator Problem - Example

Let the process and controller be:

GP =
1

1 + sT
GR =

K

s

Let the load disturbance l(t) be a step:

l(t) =

{
1 if t ≥ 0

0 if t < 0

The final theorem yields:

y∞ = lim
t→+∞

y(t) = lim
s→0

s

s(1 + sT ) + K
= 0
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Stationary Errors - The Regulator Problem - Example

Let the process and controller instead be:

GP =
1

s(1 + sT )
GR = K

Notice that G0 = GPGR is the same as in the previous slide. Let the load

disturbance l(t) be a step:

l(t) =

{
1 if t ≥ 0

0 if t < 0

The final theorem yields:

y∞ = lim
t→+∞

y(t) = lim
s→0

1

s(1 + sT ) + K
=

1

K

In the regulator problem, the placement of integrators matters
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Stationary Errors - The Regulator Problem - General Case

Let

GP(s) =
KPBP(s)

spAp(s)
e−sL GR(s) =

KBR(s)

s rAR(s)

where AP(0) = BP(0) = AR(0) = BR(0) = 1. Moreover, let the load

disturbances be given by

L(s) =
1

sm+1

Then

y∞ = lim
s→0

KP

s r+p + KKP
s r−m

The stationary becomes (given that the limits exists):

r > m y∞ = 0

r = m = 0, p = 0 y∞ = KP

1+KKP

r = m = 0, p ≥ 0 y∞ = 1
K

r = m ≥ 1 y∞ = 1
K

r < m The limit does not exist.
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Stationary Errors - Example

Example

The transfer function of a process is

Gp(s) =
1

s + 1
.

The process is controlled with a PI-regulator,

Gr (s) = 1 +
2

s
.

The closed loop system is able to follow step changes in the reference

value without any stationary error, but when the reference is a ramp-

signal, r(t) = ct, a stationary error emerges. Determine the magnitude of

this stationary error.
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