Introduction, The PID Controller, State Space Models

Automatic Control, Basic Course, Lecture 1

Gustav Nilsson

15 November 2016

Lund University, Department of Automatic Control

Content

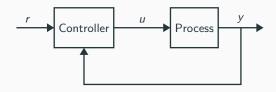
1. Introduction

2. The PID Controller

3. State Space Models

Introduction

The Simple Feedback Loop



- Reference value r
- Control signal u
- Measured signal/output y

The problem: Design a controller such that the output follows the reference signal as good as possible

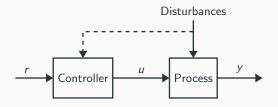
- Reference value Desired temperature
- Control signal E.g., power to the AC, amount of hot water to the radiators
- Measured value The temperature in the room

- Reference value Desired speed
- Control signal Amount of gasoline to the engine
- Measured value The speed of the car

- Reference value Number of bacterias
- Control signal Food
- $\bullet\,$ Measured value E.g., the oxygen level in the tank

Feedforward

Some systems can operate well without feedback, i.e., in open loop.



Examples of open loop systems?

Feedforward vs. Feedback

Benefits with feedback:

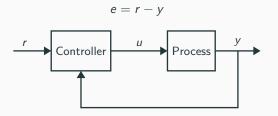
- Stabilize unstable systems
- The speed of the system can be increased
- Less accurate model of the process is needed
- Disturbances can be compensated
- WARNING: Stable systems might become unstable with feedback

Feedforward and feedback are complementary approaches, and a good controller typically uses both.

The PID Controller

The Error

The input to the controller will be the error, i.e., the difference between the reference value and the measured value.



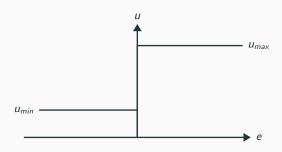
New block scheme:



11

On/Off Controller

$$u = \begin{cases} u_{max} & \text{if } e > 0 \\ u_{min} & \text{if } e < 0 \end{cases}$$



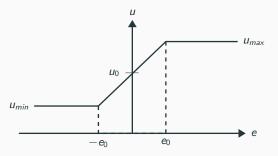
Usually not a good controller. Why?

The P Part

Idea: Decrease the controller gain for small control errors.

P-controller:

$$u = \begin{cases} u_{max} & \text{if } e > e_0 \\ u_0 + Ke & \text{if } -e_0 \le e \le e_0 \\ u_{min} & \text{if } e < -e_0 \end{cases}$$



The P Part

Idea: Decrease the controller gain for small control errors.

P-controller:

$$u = \begin{cases} u_{max} & \text{if } e > e_0 \\ u_0 + Ke & \text{if } -e_0 \le e \le e_0 \\ u_{min} & \text{if } e < -e_0 \end{cases}$$

The control error

$$e = \frac{u - u_0}{K}$$

To have e = 0 at stationarity, either:

- $u_0 = u$
- $K=\infty$

The P Part

Idea: Decrease the controller gain for small control errors.

P-controller:

$$u = \begin{cases} u_{max} & \text{if } e > e_0 \\ u_0 + Ke & \text{if } -e_0 \le e \le e_0 \\ u_{min} & \text{if } e < -e_0 \end{cases}$$

The control error

$$e = \frac{u - u_0}{K}$$

To have e = 0 at stationarity, either:

- $u_0 = u$ (What if u varies?)
- $K = \infty$ (On/off control)

The I Part

Idea: Adjust u_0 automatically to become u.

PI-controller:

$$u = K\left(\frac{1}{T_i} \int e(t) dt + e\right)$$

Compared to the P-controller, now

$$u_0 = \frac{K}{T_i} \int e(t) dt$$

At stationary e = 0 if and only if r = y.

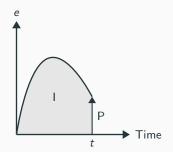
PI controller archives what we want, if performance requirements are not extensive.

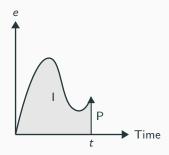
The D Part

Idea: Speed up the PI-controller.

PID-controller:

$$u = K\left(e + \frac{1}{T_i} \int e(t) dt + T_d \frac{de}{dt}\right)$$





P acts on the current error, I acts on the past error, D acts on the "future" error

State Space Models

State Space Models

Linear dynamics can be described in the following form

$$\dot{x} = Ax + Bu$$
$$y = Cx (+Du)$$

Here $x \in \mathbb{R}^n$ is a vector with states. States can have a physical "interpretation", but not necessary.

In this course $u \in \mathbb{R}$ and $y \in \mathbb{R}$ will be scalars. (For MIMO systems, see Multivariable Control (FRTN10))

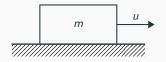
Example

Example

The position of a mass m controlled by a force u is described by

$$m\ddot{x} = u$$

where x is the position of the mass.



Introduce the states $x_1 = \dot{x}$ and $x_2 = x$ and write the system on state space form. Let the position be the output.

Dynamical Systems

	Continous Time	Discrete Time
		(sampled)
Linear	This course	Real-Time Systems
		(FRTN01)
Nonlinear	Nonlinear Control and	
	Servo Systems (FRTN05)	

Next lecture: Nonlinear dynamics can be linearized.