Math Repetition for Automatic Control, Basic Course

Maria Karlsson

2012

Complex numbers

1.

a. What is the real part $\operatorname{Re}(z)$ and the imaginary part $\operatorname{Im}(z)$ of the complex number

$$
z=-2+3 i
$$

b. Mark the number $z=2+4 i$ in the complex plane.
c. Mark the number $z=-1+i$ in the complex plane, and indicate its magnitude and argument.
d. Compute the magnitude, $|z|$, and $\operatorname{argument}, \arg (z)$, of $z=-1+i$.
e. Write $z=-1+i$ in polar coordiantes.
f. What is the real and imaginary parts of $z=3 e^{\pi i}$
2.
a. Compute $\left|e^{\omega i}\right|$, where ω is a real number.
b. Compute $\arg \left(e^{\omega i}\right)$, where ω is a real number.
c. Compute $|-2(-1+2 i)(-4-3 i)|$
d. Compute $\arg (-2(-1+2 i)(-4-3 i))$
e. Compute $\left|\frac{2 e^{-5 i}(2-i)^{2}}{2 i+3}\right|$
f. Compute $\arg \left(\frac{2 e^{-5 i}(2-i)^{2}}{2 i+3}\right)$

Second order polynomial equations

3. Solve $x^{2}-x+4=0$
4. Solve $3 x^{2}+2 x+1=0$

Partial fractions expansion

5. Expand

$$
f(x)=\frac{1}{(x+1)(x+2)}
$$

in partial fractions. That is express $f(x)$ as

$$
f(x)=\frac{a}{x+1}+\frac{b}{x+2}
$$

where a and b are constants.
6. Expand

$$
f(x)=\frac{3 x+11}{(x+1)(x-3)(x+2)}
$$

in partial fractions.
7. Expand

$$
f(x)=\frac{2}{x^{2}+3 x+2}
$$

in partial fractions.

Matrices

8.

a. Compute the product of the matrices A and B.

$$
A \cdot B=\left(\begin{array}{cc}
-1 & 0 \\
3 & 2
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & -2 \\
4 & -5
\end{array}\right)
$$

b. Compute the product of the matrices A and B.

$$
A \cdot B=\binom{-1}{3} \cdot\left(\begin{array}{ll}
1 & 2
\end{array}\right)
$$

c. Compute the product of the matrices A and B.

$$
A \cdot B=\left(\begin{array}{ll}
-1 & 0
\end{array}\right) \cdot\binom{4}{-5}
$$

9. Compute the determinant of the matrix

$$
A=\left(\begin{array}{cc}
-2 & 4 \\
1 & 0
\end{array}\right)
$$

10. Invert the matrix A

$$
A=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)
$$

11.

a. Compute the eigenvalues of matrix A in problem 10 .
b. Compute the eigenvalues of the matrix

$$
A=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & -2
\end{array}\right)
$$

12.

a. Consider the following system of equations

$$
\begin{aligned}
5 x_{1}+3 x_{2} & =7 \\
2 x_{1}-x_{2} & =0
\end{aligned}
$$

Express the system as $A x=B$, where A is a matrix, B a vector, and x is given by:

$$
x=\binom{x_{1}}{x_{2}}
$$

b. Express the system of equations below as $A x=B$

$$
\begin{aligned}
& x_{1}+x_{3}=0 \\
& x_{2}-x_{3}=1 \\
& x_{1}+x_{2}=2
\end{aligned}
$$

Taylor series expansion

13.

a. Write the Taylor series expanson of $f(x)=x^{2}$ at $x=2$. Neglect terms of order 2 and above.
b. Write the Taylor series expanson of $f(x, u)=5 \sqrt{3 x}+\sin (u)$ at $x=3, u=\pi$. Neglect terms of order 2 and above.

