Math Repetition for Automatic Control, Basic Course
 Solutions

Maria Karlsson

2012

Complex numbers

1.

a. $\operatorname{Re}(z)=-2, \operatorname{Im}(z)=3$. Note that the imaginary part is not $3 i$.
b. See Figure 1.

Figur 1

Figur 2
c. See Figur 2. The magnitude $|z|=r$ is the distance to the origin, and the $\operatorname{argument} \arg (z)=\phi$ is the angle to the positive real axis.
d. The magnitude $|z|$: From Figure 2, we note that Pythagoras' Theorem can be applied:

$$
|z|=\sqrt{(\operatorname{Re}(z))^{2}+(\operatorname{Im}(z))^{2}}
$$

This formula can be applied to compute the magnitude of any complex numbers. In our case $\operatorname{Re}(z)=-1$ and $\operatorname{Im}(z)=1$. Hence $|z|=\sqrt{(-1)^{2}+1^{2}}=\sqrt{2}$.

Figur 3

The Argument $\arg (z)$: Here we compute the argument in radians. The angle ϕ i Figure 2 can be computed as $\phi=\pi-v$, where v is the angle in the triangle shown in Figure 3. We have

$$
\tan (v)=\frac{\operatorname{Im}(z)}{|\operatorname{Re}(z)|} \Longrightarrow v=\arctan \left(\frac{\operatorname{Im}(z)}{|\operatorname{Re}(z)|}\right)
$$

In our case $v=\arctan (1 / 1)=\arctan 1=\pi / 4$, and thus $\phi=\pi-v=$ $\pi-\pi / 4=3 \pi / 4$.
e. A number z can be expressed in polar coordinates as $z=|z| e^{\arg (z) i}$. From the previous problem we know that $|z|=\sqrt{2}, \arg (z)=3 \pi / 4$. Therefore $z=-1+i=\sqrt{2} e^{3 \pi i / 4}$.
f. We can express z as

$$
z=3 e^{\pi i}=3(\cos (\pi)+i \sin (\pi))=3(-1+i \cdot 0)=-3
$$

So $\operatorname{Re}(z)=-3, \operatorname{Im}(z)=0$.
2.
a.

$$
\left|e^{\omega i}\right|=|\cos (\omega)+i \sin (\omega)|=\sqrt{\cos ^{2}(\omega)+\sin ^{2}(\omega)}=\sqrt{1}=1
$$

Its very useful to know this result by heart.
b. The number $e^{\omega i}$ is a complex number expressed in polar coordinates with magnitude 1 and argument ω. Therefore

$$
\arg \left(e^{\omega i}\right)=\omega
$$

c.

$$
\begin{gathered}
|-2(-1+2 i)(-4-3 i)|=|-2| \cdot|-1+2 i| \cdot|-4-3 i|= \\
2 \cdot \sqrt{(-1)^{2}+2^{2}} \cdot \sqrt{(-4)^{2}+(-3)^{2}}=2 \sqrt{5} \sqrt{25}=10 \sqrt{5} \approx 22.36
\end{gathered}
$$

d. Arguments are subject to the same rules as logarithms, e.g.

$$
\arg \left(x y^{2} / z\right)=\arg (x)+2 \arg (y)-\arg (z)
$$

In our case

$$
\begin{gathered}
\arg (-2(-1+2 i)(-4-3 i))=\arg (-2)+\arg (-1+2 i)+\arg (-4-3 i)= \\
\pi+(\pi+\arctan (2 /-1))+(\pi+\arctan (-3 /-4))= \\
3 \pi+\arctan (-2)+\arctan (3 / 4) \approx 8.96
\end{gathered}
$$

e.

$$
\left|\frac{2 e^{-5 i}(2-i)^{2}}{2 i+3}\right|=\frac{2\left|e^{-5 i}\right||2-i|^{2}}{|2 i+3|}=\frac{2 \cdot 1\left(2^{2}+(-1)^{2}\right)}{\sqrt{2^{2}+3^{2}}}=\frac{10}{\sqrt{13}} \approx 2.77
$$

f.

$$
\begin{gathered}
\arg \left(\frac{2 e^{-5 i}(2-i)^{2}}{2 i+3}\right)=\arg (2)+\arg \left(e^{-5 i}\right)+2 \arg (2-i)-\arg (2 i+3)= \\
0+(-5)+2 \arctan (-1 / 2)-\arctan (2 / 3) \approx-3.51
\end{gathered}
$$

Second order polynomial equations

3. The solution to $x^{2}+p x+q=0$, where p and q are constants, is given by

$$
x_{1,2}=-\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^{2}-q}
$$

In our case $p=-1, q=4$, and thus

$$
x_{1,2}=-\frac{-1}{2} \pm \sqrt{\left(\frac{-1}{2}\right)^{2}-4}=\frac{1}{2} \pm \sqrt{-\frac{15}{4}}=\frac{1}{2} \pm i \frac{\sqrt{15}}{2} \approx 0.5 \pm 1.94 i
$$

4. In order to use the formula above, we divide both sides by 3 .

$$
x^{2}+\frac{2}{3} x+\frac{1}{3}=0
$$

According to the formula ($p=2 / 3, q=1 / 3$) we have

$$
x_{1,2}=-\frac{1}{3} \pm \sqrt{\frac{1}{9}-\frac{1}{3}}=-\frac{1}{3} \pm i \frac{\sqrt{2}}{3} \approx-0.33 \pm 0.47 i
$$

Partial fractions expansion

5. Suppose that $f(x)$ can be expressed as

$$
f(x)=\frac{1}{(x+1)(x+2)}=\frac{a}{x+1}+\frac{b}{x+2}
$$

We have

$$
f(x)=\frac{a}{x+1}+\frac{b}{x+2}=\frac{a(x+2)+b(x+1)}{(x+1)(x+2)}=\frac{x(a+b)+2 a+b}{(x+1)(x+2)}
$$

By identification of the parameters, we obtain the following system of equations

$$
\begin{array}{r}
a+b=0 \\
2 a+b=1
\end{array}
$$

The solution is $a=1$ and $b=-1$, and therefore

$$
f(x)=\frac{1}{(x+1)(x+2)}=\frac{1}{x+1}-\frac{1}{x+2}
$$

6. Proceeding as we did above, we have:

$$
\begin{aligned}
& f(x)=\frac{3 x+11}{(x+1)(x-3)(x+2)}=\frac{a}{x+1}+\frac{b}{x-3}+\frac{c}{x+2} \\
& =\frac{a(x-3)(x+2)+b(x+1)(x+2)+c(x+1)(x-3)}{(x+1)(x-3)(x+2)} \\
& =\frac{x^{2}(a+b+c)+x(-a+3 b-2 c)-6 a+2 b-3 c}{(x+1)(x-3)(x+2)}
\end{aligned}
$$

We now need to solve

$$
\begin{aligned}
a+b+c & =0 \\
-a+3 b-2 c & =3 \\
-6 a+2 b-3 c & =11
\end{aligned}
$$

The solution is $a=-2, b=1, c=1$, and therefore

$$
f(x)=\frac{3+11 x}{(x+1)(x-3)(x+2)}=-\frac{2}{x+1}+\frac{1}{x-3}+\frac{1}{x+2}
$$

7. Start by determining the roots of the polynomial in the denominator

$$
x^{2}+3 x+2=0 \Longrightarrow x_{1}=-1, \quad x_{2}=-2
$$

We can express $f(x)$ as

$$
f(x)=\frac{2}{x^{2}+3 x+2}=\frac{2}{(x+1)(x+2)}
$$

Proceeding as we did above results in

$$
\begin{aligned}
f(x)=\frac{2}{(x+1)(x+2)} & =\frac{a}{x+1}+\frac{b}{x+2}=\frac{a(x+2)+b(x+1)}{(x+1)(x+2)} \\
& =\frac{x(a+b)+2 a+b}{(x+1)(x+2)}
\end{aligned}
$$

The solution to

$$
\begin{array}{r}
a+b=0 \\
2 a+b=2
\end{array}
$$

is $a=2, b=-2$. Therefore

$$
f(x)=\frac{2}{x^{2}+3 x+2}=\frac{2}{x+1}-\frac{2}{x+2}
$$

Matrices

8.

a.

$$
A \cdot B=\left(\begin{array}{cc}
-1 \cdot 1+0 \cdot 4 & -1 \cdot-2+0 \cdot-5 \\
3 \cdot 1+2 \cdot 4 & 3 \cdot-2+2 \cdot-5
\end{array}\right)=\left(\begin{array}{cc}
-1 & 2 \\
11 & -16
\end{array}\right)
$$

b.

$$
A \cdot B=\left(\begin{array}{cc}
-1 \cdot 1 & -1 \cdot 2 \\
3 \cdot 1 & 3 \cdot 2
\end{array}\right)=\left(\begin{array}{cc}
-1 & -2 \\
3 & 6
\end{array}\right)
$$

c.

$$
A \cdot B=(-1 \cdot 4+0 \cdot-5)=-4
$$

9.

$$
\operatorname{det}(A)=-2 \cdot 0-4 \cdot 1=-4
$$

The formula for determining the determinant of a 2×2 matrix can be found in the formula sheet.
10.

$$
A^{-1}=\frac{1}{\operatorname{det}(A)}\left(\begin{array}{cc}
4 & -2 \\
-3 & 1
\end{array}\right)=\frac{1}{1 \cdot 4-2 \cdot 3}\left(\begin{array}{cc}
4 & -2 \\
-3 & 1
\end{array}\right)=\left(\begin{array}{cc}
-2 & 1 \\
\frac{3}{2} & -\frac{1}{2}
\end{array}\right)
$$

The formula for inverting a 2×2 matrix can be found in the formula sheet.
11.
a. The eigenvalus λ of a matrix A satisfy the following equation (this equation is also part of the formula sheet)

$$
\operatorname{det}(\lambda I-A)=0
$$

In our case

$$
\begin{aligned}
\operatorname{det}(\lambda I-A) & =\operatorname{det}\left(\lambda\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)-\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\right)=\operatorname{det}\left(\left(\begin{array}{cc}
\lambda-1 & -2 \\
-3 & \lambda-4
\end{array}\right)\right) \\
& =(\lambda-1)(\lambda-4)-(-2) \cdot(-3)=\lambda^{2}-5 \lambda-2=0
\end{aligned}
$$

By solving this second order polynomial equation, we obtain

$$
\lambda=\frac{5}{2} \pm \sqrt{\left(\frac{5}{2}\right)^{2}+2} \Longrightarrow \lambda_{1}=-0.37, \lambda_{2}=5.37
$$

b. Here A is diagonal and the eigenvalues are given by the diagonal elements, $\lambda_{1}=-1, \lambda_{2}=4, \lambda_{3}=-2$.
12.
a. The system of equations can be expressed as

$$
\binom{5}{2} x_{1}+\binom{3}{-1} x_{2}=\binom{7}{0}
$$

which is the same as

$$
\left(\begin{array}{cc}
5 & 3 \\
2 & -1
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{7}{0}
$$

b. The system of equations can be expressed as

$$
\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)
$$

Taylor series expansion

13.

a. A function $f(x)$ can be exapnded in a Taylor series around a point a. I.e. $f(x)$ can be expressed as

$$
f(x)=f(a)+\frac{1}{1!} \frac{d f}{d x}(a)(x-a)+\frac{1}{2!} \frac{d^{2} f}{d x^{2}}(x-a)^{2}+\ldots
$$

We can then obtain an approximation of $f(x)$ around $x=a$ by only keeping some of the first few terms. The approximation is good provided that x stays sufficiently close to a.
Our task was to expand $f(x)$ up to first order terms, i.e. the two first terms in the Taylor series. We want to expand $f(x)$ around the point $x=2$, i.e. $a=2$.
We have

$$
f(x) \approx f(2)+\frac{d f}{d x}(2)(x-2)
$$

where

$$
f(2)=4, \quad \frac{d f}{d x}=2 x, \quad \frac{d f}{d x}(2)=4
$$

The result is

$$
f(x) \approx 4+4(x-2)=4(x-1)
$$

b. Here $f(x, u)$ is a function of two varaibles and the Taylor series expansion at $x=a, u=b$ is given by

$$
\begin{gathered}
f(x, u)=f(a, b)+\frac{1}{1!} \frac{\partial f}{\partial x}(a, b)(x-a)+\frac{1}{1!} \frac{\partial f}{\partial u}(a, b)(u-b)+ \\
+\frac{1}{2!} \frac{\partial^{2} f}{\partial x^{2}}(a, b)(x-a)^{2}+\frac{1}{2!} \frac{\partial^{2} f}{\partial x \partial u}(a, b)(x-a)(u-b)+\frac{1}{2!} \frac{\partial^{2} f}{\partial u^{2}}(a, b)(u-b)^{2}+\ldots
\end{gathered}
$$

Since our task is to expand up to first order terms, we keep the constant $f(a, b)$, and all terms that contain first order derivatives of $f(x, u)$.
In our case we have

$$
f(x, u) \approx f(3, \pi)+\frac{\partial f}{\partial x}(3, \pi)(x-3)+\frac{\partial f}{\partial u}(3, \pi)(u-\pi)
$$

where

$$
\begin{gathered}
f(3, \pi)=15-0=15, \quad \frac{\partial f}{\partial x}=5 \sqrt{3} \frac{1}{2} x^{-\frac{1}{2}}=\frac{5}{2} \sqrt{\frac{3}{x}}, \quad \frac{\partial f}{\partial x}(3, \pi)=\frac{5}{2}=2.5, \\
\frac{\partial f}{\partial u}=\cos (u) \frac{\partial f}{\partial u}(3, \pi)=-1
\end{gathered}
$$

The result is

$$
f(x, u) \approx 15+2.5(x-3)-1(u-\pi) \approx 10.64-2.5 x-u
$$

