
1 a. The transfer function from u to y is given by G(s) = C(sI − A)−1B.

G(s) =


 1 0












s+ 7 −2
0 s− 4









−1






0

1








=

2

(s+ 7)(s − 4)

b. The poles of the system are the eigenvalues of the system matrix A, which
are also the zeros of the transfer function denominator polynomial. Solving
(s + 7)(s − 4) = 0 shows that the system has one pole in −7 and one pole
in 4. Since one pole has positive real part, the system is unstable.

2 a. The stationary points are given by setting ẋ1 = ẋ2 = 0, which gives

0 = −2x01 + 1
2

0 = −x01 +
√

x02

Which gives the stationary point as (u0, x01, x
0
2) = (1, 0.5, 0.25).

b. Calculating the partial derivatives of the two equations (denoted f1 and f2)
gives

" f1
"x1
= −2,

" f1
"x2
= 0,

" f1
"u
= 2u,

" f2
"x1
= −1,

" f2
"x2
=

1

2
√
x2
,

" f2
"u
= 0

Inserting the stationary point (u0, x01, x
0
2) = (1, 0.5, 0.25) gives

" f1
"x1
(1, 0.5, 0.25) = −2,

" f1
"x2
(1, 0.5, 0.25) = 0,

" f1
"u
(1, 0.5, 0.25) = 2,

" f2
"x1
(1, 0.5, 0.25) = −1,

" f2
"x2
(1, 0.5, 0.25) = 1,

" f2
"u
(1, 0.5, 0.25) = 0

Introduce new variables

∆x = x − x0

∆u = u− u0
(1)

The linearized system is then given by

∆ ẋ =
[−2 0

−1 1

]

∆x +
[

2

0

]

∆u

3 a. A-3, B-1, C-2. It is clear that response A lacks integral action since it gives
a stationary error when subject to a constant load disturbance, and the sys-
tem should therefore only contain 4 poles (no integral pole). Both responses
B and C contains integral action (no stationary error), and the remaining
sets of poles contain 5 poles. The complex poles are the same for all three
systems, but the second set of poles also has a slow pole located in −5, it
corresponds to the comparably slow response C. Similarly, the third set of
poles has a fast pole in −25, which gives the fast response B.
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b. By calculating the absolute value of the poles, ω 0 is given. Looking at the
angle ϕ of the poles from the negative real axis, ζ = cosϕ can be calculated.

ω 10 = $−17.1+ 8.3i$ =
√

17.12 + 8.32 % 19

ω 20 = $−14.4+ 7.0i$ =
√

14.42 + 72 % 16

ζ 1 = cos
(

arctan

(

8.3

17.1

))

% 0.9

ζ 2 = cos
(

arctan

(

7.0

14.4

))

% 0.9

c. Increasing ω 0 will in turn increase the gain of the controller, which will
reduce stationary errors.

d. Choosing a high value of ω 0 will result in a large control signal, and for
this process the control signal is limited to 10 V.

4 a. The low frequency asymptote is given by GLF(s) = K = 10. There are three
corner frequencies: ω 1 = 0.1 rad/s, ω 2 = 1 rad/s and ω 3 = 100 rad/s. The
gain curve breaks downwards once at ω 1, upwards once at ω 2, and down-
wards once at ω 3, which indicates that there should be poles corresponding
to ω 1 and ω 3 and a zero corresponding to ω 2. The phase decreases at ω 1
and ω 3 and increases at ω 2, which confirms this statement. The transfer
function thus becomes:

G(s) =
10 (1+ s)

(

1+
s

0.1

)(

1+
s

100

) =
100 (s+ 1)

(s+ 0.1) (s+ 100)

b. The process output is given by

y(t) = 0.1$G(iω )$ sin (ω t+ arg(G(iω )))

Studying the Bode diagram at ω = 10 rad/s gives

$G(10i)$ % 1, arg(G(10i)) % −11○.

The gain and phase may also be obtained from the transfer function that
was determined in subproblem a. This gives:

$G(10i)$ =
100
√
102 + 1√

102 + 0.12
√
102 + 1002

= 1

arg(G(10i)) = arctan 10− arctan 100− arctan 0.1 % −0.19 rad % −11○

The process output becomes

y(t) = 0.1 sin(10t− 11○)
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c. The phase margin is defined at the frequency ω c where $G0(iω c)$ = 1. If we
denote the process shown in the Bode plot GP(s), we get $2 ⋅ GP(iω c)$ = 1,
i.e. $GP(iω c)$ = 0.5. By studying the bode magnitude plot we see that ω c %
170 rad/s. The phase of the process at this frequency is approximately −60○.
Since a P controller only changes the gain of the loop transfer function G0
and leaves the phase unchanged, the phase margin is given by

φm = π + argG0(iω c) = π + argGP(iω c) = 180○ − 60○ = 120○

when the system is controlled with a P controller with a gain of 2.

Another option is to use the transfer function that was determined in sub-
problem a. to compute the phase margin:

∣

∣

∣

∣

2 ⋅
100 (iω c + 1)

(iω c + 0.1) (iω c + 100)

∣

∣

∣

∣

= 1' ω c % 173

argGP(iω c) % −60○ ' φm = 120○

5 a. The closed-loop poles are given by the characteristic polynomial

det(sI − A+ BL) =

∣

∣

∣

∣

∣

s+ 1+ 3 −1+ 2
0 s+ 4

∣

∣

∣

∣

∣

= (s+ 4)(s+ 4) = 0

Thus, the closed-loop system has two poles in −4.

b. The characteristic equation for the Kalman filter is given by

det(sI − A+ KC) =

∣

∣

∣

∣

∣

s+ 1+ k1 −1
k2 s+ 4

∣

∣

∣

∣

∣

= (s+ 1+ k1)(s+ 4) =

= s2 + (5+ k1)s+ 4+ 4k1 + k2

The desired characteristic polynomial is given by (s+8)(s+8) = s2+16s+64.
This gives

5+ k1 = 16' k1 = 11
4+ 4k1 + k2 = 64' k2 = 16

The Kalman filter gain is thus given by K =








11

16








.

c. If we should be able to place the poles of the closed-loop system arbitrarily
using state feedback, the system has to be controllable. The controllability
matrix is given by

Wc =


 B AB


 =








1 −1
0 0









Since the controllability matrix does not have two linearly independent
columns (detWc = 0), the system is not controllable. One of the poles lo-
cated in −4 is impossible to move using state feedback, which limits the
achievable speed of the system.
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6. The ball and beam process can be controlled by cascaded controllers, where
the inner loop concerns control of the beam angle, and the outer loop con-
cerns control of the position of the ball. The block diagram is shown in
Figure 1, with notation according to the problem text.

zre f ϕ re f u ϕ z
GPID(s) GP(s) Gϕ (s) Gz(s)

−1

−1

ΣΣ

Figure 1 Cascaded controllers in Problem 6.

7. We have to figure out at which gain of the P controller each of the three
systems becomes unstable, which is given by the amplitude margin. The
amplitude margin is given from where the Nyquist curve crosses the neg-
ative real axis, as −1/xc, if xc is the coordinate for the crossing point. The
Nyquist curves give

A1m % −1/(−0.25) = 4

A2m % −1/(−0.3) = 10/3

A3m % −1/(−0.2) = 5

which gives a maximum K of 10/3 % 3.33.

8 a. The controller transfer function is given by GC(s) = 1. The transfer function
from the reference r to the control error e becomes

Ger(s) =
1

1+ GC(s)GP(s)
=

1

1+ 4
s(s+2)

=
s(s+ 2)
s2 + 2s+ 4

The reference signal is a unit step, i.e., R(s) = 1
s . Since the system is

asymptotically stable, the final value theorem may be used. This gives

lim
t→∞
e(t) = lim

s→0
sE(s) = lim

s→0
sGer(s)R(s) = lim

s→0
s
s(s+ 2)
s2 + 2s+ 4

1

s
= 0

b. We want to reduce the stationary error due to unit ramp disturbances in r
from 0.5 to 0.1, i.e. by a factor 5. Thus, we choose a lag filter given by

Gk(s) =
s+ a
s+ a/M

, M > 1.

Since the process has an integrator, and we want the error to decrease by
a factor 5, we choose M = 5.
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We can also compute the stationary error using the final value theorem.
The transfer function from r to e with the compensation link included is
given by

Ger(s) =
1

1+ GP(s)Gk(s)
=

Ms3 + (2M + a)s2 + 2as
Ms3 + (2M + a)s2 + (4M + 2a)s+ 4Ma

The conditions for stability of the third order polynomial with M > 1 are

2M + a > 0,
4M + 2a > 0,
4Ma > 0,
(2M + a)(4M + 2a) > 4Ma

which means that the system is asymptotically stable as long as a > 0 and
M > 0. Thus, we can use the final value theorem to compute the stationary
error due to a ramp disturbance R(s) = 1

s2
. We get

lim
t→∞
e(t) = lim

s→0
sE(s) = lim

s→0
sGer(s)R(s) =

= lim
s→0
s ⋅

Ms3 + (2M + a)s2 + 2as
Ms3 + (2M + a)s2 + (4M + 2a)s+ 4Ma

⋅
1

s2
=
2a

4Ma
=
1

2M

We choose M = 5, which gives a stationary error of 0.1.
The next step is to determine a. The problem text states that we do not
want the filter to give any major change in robustness. We use the rule of
thumb a = 0.1ω c that guarantees that the phase margin is decreased by at
most 6○. ω c is the crossover frequency for the uncompensated system, which
is given by

1 = $GP(iω c)$ =
4

ω c
√

ω 2c + 4
' ω c =

√

−2+
√
20 = 1.57

We thus choose a = 0.16.
The lag compensator becomes

Gk(s) =
s+ a
s+ a/M

=
s+ 0.16
s+ 0.031
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