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0. Introduction to MATLAB and SIMULINK

Solve the following exercises using MATLAB. These exercises are in-

spired by or fully extracted from EDA017: Föreläsningsanteckningar,

OCTAVE/MATLAB by Christian Söderberg.

0.1

a. Plot y(x) = e−x/2cos(2π x) when −6 ≤ x ≤ 3 by using the function
handle to create an anonymous function. Give your plot a title as well

as labels on the axes. Useful commands: fplot, xlabel, ylabel,

title.

b. Modify your code such that you only show values −4.5 ≤ x ≤ −1
and −10 ≤ y ≤ 10. Useful command: axis.

c. Integrate the function for−4.5 ≤ x ≤ −1. Useful commands: integral,
quad.

d. Find the solution to f (x) = 0 when f (x) = x3+2x−1. Comment on
the answer. Useful command: fsolve.

0.2 Write a function which for every matrix A gives you the sum of the

diagonal elements of that matrix. Useful commands: diag, sum and

size.

0.3 Solve the differential equation

ÿ+ 7ẏ− 3y = 0
y(0) = 0
ẏ(0) = 1

in the interval 0 ≤ t ≤ 5 by using MATLABs solver ode45.

0.4 Try to fit a first order polynomial ax + b to the following measure-
ments

x y

1 3.9286

2 5.4059

3 6.0771

4 7.7145
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Chapter 0. Introduction to MATLAB and SIMULINK

Solve the following exercises using SIMULINK in MATLAB. These ex-

ercises are taken from Exercises in MATLAB/Simulink, Signals and

Systems by Thomas Munther.

0.5 Investigate the bacterial growth in a jam pot. Assume that the num-

ber of born bacteria is increasing proportional to the existing num-

ber of bacteria x and the number dying is proportional to the existing

number in square. This gives the following differential equation

dx

dt
= bx − px2

where b = 1 [1/hour] is the birth rate constant and p = 0.5 [1/(bacteria⋅hour)]
is the death rate constant. Assume x(0) = 100 [bacteria]. Use SIMULINK
to show how the solution to the differential equation looks like.

0.6 Some physiological systems are better described in discrete time

which gives rise to difference equations. Show the behavior of y in

the two following difference equations

a.

yt = −0.5 ⋅ yt−1 + xt

b.

yt = 0.5 ⋅ yt−1 + xt

where x is the input signal to the system, in shape of a step starting

in t = 0 with amplitude 1 and y−1 = 1. yt is the value of y in time
step t.
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1. Biochemical Reactions

1.1 Use the law of mass balance to derive the differential equations

govering the production of X and Y:

a.

X
k1−−TS−−
k−1
Y

b.

X + X
k1−−TS−−
k−1
Y

c.

3X + Y
k1−−TS−−
k−1
Z (1.1)

1.2 Simulate and plot the concentrations for the substrate S, enzyme

E, substrate-enzyme complex C and the end product P for the basic

enzymatic reaction

S+ E
k1−−TS−−
k−1
C
k2−T P + E

using the following set of parameters; k1 = 0.1, k−1 = 0.01 and k2 =
0.02, and with the following initial conditions [S]0 = 0.15 [mmol/l],
[E]0 = 0.01 [mmol/l], [C]0 = 0 [mmol/l] and [P]0 = 0 [mmol/l]. What
happens if the initial concentration of the enzyme is doubled? What

happens if the initial concentration of the substrate is doubled? How

does these results correspond to the Michealis-Menten parameters?

1.3 The data in Table 1.1 describes the concentration and reaction rates

of a chemical process. Is it an enzymatic reaction following the

Michaelis-Menten relationship? Can you give some rough estimates

of Vmax and Km from this graph? Plot the inverse of the concentra-

tion versus the inverse of the reaction rate. This plot is commonly

reffered to as a Lineweaver-Burk plot. Can you give some rough

estimates of Vmax and Km from this graph as well?

1.4 Competetive Inhibition: Some enzymes may bind other substances

than the target substrate to the binding site, thereby inhibiting the

formation of the intended substrate-enzyme complex and the subse-

quent end-product. Such a situation is characterized by the following

reaction dynamics:

S+ E
k1−−TS−−
k−1
C1

k2−T P+ E

I + E
k3−−TS−−
k−3
C2
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Chapter 1. Biochemical Reactions

Table 1.1 Reaction Data for problem 3

Substrate Reaction

Concentration [mM] Velocity [mM/s]
0.1 0.04

0.2 0.08

0.5 0.17

1.0 0.24

2.0 0.32

3.5 0.39

5.0 0.42

Derive the following relationship for the reaction velocity of the prod-

uct reaction, considering steady-state conditions for the enzyme and

enzyme complexes and preservation of the total enzyme content:

V = Vmax[S]
[S] + Km(1+ [I]/K I)

where [I] is the concentration of the inhibitor, Km = (k−1 + k2)/k1
and K I = k−3/k3.

1.5 Alcohol metabolism: Clearance of the blood alcohol level (BAL) [A]
[mg/dl] from the liver is metabolized by more than 20 different en-
zymes. From experimental data the total clearance effect of these

enzymes has been lumped into a common Michaelis-Menten rela-

tionship with population average Vmax = −15[mg/(dl⋅ h)] and a
Km = 5 [mg/dl].

d[A]
dt

= Vmax[A]
Km + [A]

To calculate the BAL, the total distribution volume of the body for

alhocol has to be known. The following relationship between the total

water volume, representing this distribution volume VD [l], and the
weight mBW [kg], gender and age Y [years] of the person has been
suggested.

VD = 20+ 0.36mBW − 0.1Y, Men

VD = 14+ 0.25mBW , Women

Assuming that a 25 year old man of 80 kg consumes a drink contain-

ing 2 cl of alcohol (density 800 kg/m3) at a fasting state. Digestion
of alcohol is very rapid on an empty stomach, and you may assume

that the total alcohol content has reached the blood stream after 20

minutes whereafter metabolization is considered to start. Simulate

and plot the BAL level for the four hours following the drink.
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2. Model Building and Linearization

2.1 Given the compartment model below

y

x1 x2u
k k

assume that x1 and x2 represent quantities of a substance subject

to conservation. y is a measurement of x2.

a. Give the balance equations when k = 1. What are the states, the
input and the output of the system?

b. From the balance equations derive the state space representation

for the system.

c. Determine the transfer function of the system analytically and by

using functions from the control toolbox in MATLAB.

2.2 Give the state-space representation of the system

...
y + 3ÿ+ 2ẏ+ y= u

where u(t) and y(t) are the input and output, respectively. Choose
states x1 = y, x2 = ẏ and x3 = ÿ.

2.3 A process with output y(t) and input u(t) is described by the differ-
ential equation

ÿ+√y+ yẏ= u2

a. Introduce states x1 = y, x2 = ẏ and give the state space representa-
tion of the system.

b. Find all stationary points (x01, x02,u0) of the system.

c. Linearize the system around the stationary point corresponding to

u0 = 1.

2.4 Linearize the system

ẋ1 = x21x2 +
√
2 sinu ( = f1(x1, x2,u))

ẋ2 = x1x22 +
√
2 cosu ( = f2(x1, x2,u))

y = arctan x2
x1
+ 2u2 ( = �(x1, x2,u))

around the stationary point u0 = π /4.

2.5 Blood Doping: Everyday about 2.5 ⋅1011 (0.25 trillion) new red blood
cells (RBCs) are released from the bone marrow into the peripheral
circulation, and in steady-state the same number of depleted RCB:s
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Chapter 2. Model Building and Linearization

are cleared by the spleen. Assume that the average lifespan of a

RCB is 120 days, and the cleared amount between two days k and

k− 1 is a constant fraction f of the total cell population R(k− 1) at
day k− 1. The cell population R(k) is Rre f [trillion cells] at steady
state. Furthermore, the rate of production r(k) [trillion cells/day]
is controlled by the level of erythropoietin EPO u(k) [Units/ml] ac-
cording to the outlined dynamics below (changes in the EPO level
do not fully effect the production rate directly, but the production

rate r(k) is partly dependent on the production rate the previous
day r(k− 1)):

r(k) = 0.9 ⋅ r(k− 1) + u(k), r(0) = f ⋅ Rre f ,u(0) = 0.025 (2.1)

Set up the difference equations for the red blood cell population R(k)
and the production rate r(k). Assume that we are at steady state
with a total cell population Rre f of 120 ⋅ 0.25 trillion cells. Create
a Simulink model according to Fig. 2.1 and simulate the system

for 100 days. Assume that the level of EPO normally is constant

at 0.025 Units/ml, but that it is artificially elevated to the double
normal level by injections for 20 consecutive days between day 21

and 40.

Production Rate

Population
From

Workspace

epo

EPO

Discrete State−Space

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

Figure 2.1 Simulink model for the red blood cell system

2.6 Infection; Bacteria-Leukocytes Predator-Prey System: Neuthrophiles

are specialised white blood cells (leukocytes), specialising in defend-
ing against bacterial infections. Let B(t) denote the number of bac-
teria in a wound and N(t) the number of neuthrophiles. The bacte-
rial growth factor is α [bacteria/hour] and the killing factor of the
neuthrophiles β [bacteria/hour] and assume that the entry rate of
new neuthrophiles is u(t) [neutrophiles/hour].

dB

dt
= α B(t) − β ⋅ B(t) ⋅ N(t) (2.2)

dN

dt
= −γ N(t) + u(t) (2.3)

Simulate the system in Simulink with α = 3, β = 1.1,γ = 1.5, and
with initial conditions B(0) = 100,N(0) = 0 and let u(t) be a step
with magnitude 10. What happens if α becomes large (> 8)?
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3. Control in Physiology 1

3.1 Determine the transfer functions and give differential equations,

describing the relation between input and output for the following

systems, respectively.

a.

ẋ =








−2 0

0 −3







 x +








5

2







u

y =


−1 1



 x + 2u

b.

ẋ =








−7 2

−15 4







 x +








3

8







u

y=


−2 1



 x

3.2 Determine the impulse and step responses of the systems in assign-

ment 3.1 both analytically and through MATLAB. The step response

is defined as the output of the system when the input is the step

function u(t) = 1 for t > 0 and u(t) = 0 for t < 0.

3.3 Derive the formula G(s) = C(sI − A)−1B + D for a general system

ẋ = Ax + Bu
y = Cx + Du

3.4 Consider the system

G(s) = 1

s2 + 4s+ 3

a. Calculate the poles and zeros of the system. Is the system stable?

b. Calculate the impulse response by hand and plot it in MATLAB.

3.5 Consider the linear time invariant system

dx

dt
=









0 −1
1 0







 x +








1

0







u

y =


 1 −1


 x

Is the system stable?

3.6 Determine the transfer function from U to Y for the systems below.

a.

U + G1 Y

G2

9



Chapter 3. Control in Physiology 1

b.

H1

U G1 + G2 Y

H2

c.

G3 +

U + G1 G2 Y

3.7 Assume that the system

G(s) = 0.01(1+ 10s)
(1+ s)(1+ 0.1s)

is subject to the input u(t) = sin 3t, −∞ < t < ∞

a. Determine the output y(t).

b. The Bode plot of the system is shown in figure 3.1. Determine the

output y(t) by using the Bode plot instead.

10
−3

10
−2

10
−1

10
0

10
1
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2

10
3

10
−3
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−2

10
−1

F
ör

st
är

kn
in

g

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

−90

−45

0

45

90

P
h
a
se

Frequency [rad/s]

Figure 3.1 The Bode plot in assignment 3.7.
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4. Control in Physiology 2

4.1 Assume that the amount of some substrate y inside a cell is de-

scribed by the differential equation

ẏ(t) + 0.01y(t) = 0.01u(t)

where u is the inflow of the substrate to the cell.

a. Let u be the input and y the output and determine the transfer

function GP(s) of the process.

b. This is to be controlled by negative feedback with a controller GR(s).
Draw the block diagram and write down the transfer function of the

closed loop system. Be sure to define the input u, output y, error e

and reference signal r in the block diagram of the closed loop system.

c. If GR(s) is a P controller what will the transfer function look like
then?

d. Choose K , given that GR(s) = K , such that the closed loop system
obtains the characteristic polynomial

s+ 0.1

4.2 A process is controlled by a P controller according to the figure below.

ΣΣ
r

n

u y
GR GP

−1

a. Measurements of the process output indicate a disturbance n. Cal-

culate the transfer functions from n to y (the sensitivity function).

b. Let GP(s) = 1/(s + 1) and GR(s) = K and assume that the dis-
turbance consists of a sinusoid n(t) = A sinω t. What will y become
when this disturbance is present?

c. Assume that K = 1 and A = 1 in the previous sub-assignment.
Calculate the amplitude of oscillation y for the cases ω = 0.1 and
10 rad/s, respectively.

4.3 The process given by GP(s) = 1/(s+ 1)3 is controlled through nege-
tive feedback by the controller given by GR(s) = 6.5.

a. Determine the sensitivity function S(s).
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Chapter 4. Control in Physiology 2

b. The gain plot of the sensitivity function is given below. How much

are constant load disturbances damped by the control circuit (in
closed loop, as compared to open loop)? At which angular frequency
does the control circuit exhibit the largest sensitivity towards dis-

turbances and by how much are disturbances amplified at most?

10
−1

10
0

10
1

10
−1

10
0

10
1

F
ör

st
är

kn
in

g

4.4 Determine a control law u = lrr − Lx for the system

dx

dt
=









−1 0

0 −2







 x +








1

2







u

y =


 1 1



 x

such that the poles of the closed loop system are placed in −4 and
the stationary gain is 1. How would you sketch the block diagram

of the closed loop system?
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5. Pharmacokinetics and Tracers

5.1 The half-life of a penicillin solution that contains 300 units/ml is
8 days, in plasma. What will the concentration in plasma be in 7

days? Assume the drug is eliminated from plasma through a linear

process. Plot the concentration over time.

5.2 The half-life of another penicillin solution is 6 days. Assume it is

eliminated from plasma as a linear process. How long will it take

for the concentration to drop to 40 % of the initial concentration?

5.3 Assume a drug is metabolised from plasma through a linear process.

It has an initial potency of 90 mg/ml. After 25 days in a cold room,
the concentration is found to be 80 mg/ml. What is the half-life of
the drug during the storage conditions?

5.4 Draw a compartment model of the route of a drug including the

absoption in the gut, the distribution in the body and the elimination

of the drug.
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Chapter 5. Pharmacokinetics and Tracers
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Solutions to Chapter 0. Introduction to

MATLAB and SIMULINK

Solve the following exercises using MATLAB. These exercises are in-

spired by or fully extracted from EDA017: Föreläsningsanteckningar,

OCTAVE/MATLAB by Christian Söderberg.

0.1 a. Create an anonymous function using the function handle. This func-

tion is only saved in your workspace until you close MATLAB (or
clear you workspace by the clear all command). In case you
would like to save your function as a file in your current folder

(from where you can reach it at another time), use a function m-file
(go to new → function).

y = @(x) exp(−x/2)*cos(2*pi*x);

figure

fplot(y,[−6 3])

title('My fancy plot')

xlabel('x')

ylabel('y')

figure is a command which is useful when you want to create

several plots in the same script. Use the help-command whenever

you need information about one of MATLABs buildt-in functions. In

this case you would write help figure in the command window

and the description of the function should appear.

b.
axis([−4.5 −1 −10 10])

c. % Rewrite y to be accepted by quad/integral (read in the

% description of quad/integral to understand why).

y = @(x) exp(−x/2).*cos(2*pi*x);

integral(y,−4.5,−1)
% or

quad(y,−4.5,−1)

d. f = @(x) x^3+2*x−1;
solution = fsolve(f,0)

The answer is 0.4534. Write format long in the command window

(then use the fsolve command) to get more decimals in the answer.
Due to it being numerically calculated f (0.4534) is approximately
zero.
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Solutions to chapter 0. Introduction to MATLAB and SIMULINK

0.2 Go to new → function. A file with a function-shell will appear. The
function shell looks like:

function [ output_args ] = untitled( input_args )

%UNTITLED Summary of this function goes here

% Detailed explanation goes here

end

Replace untitled with the name of your function, input_args

with the input your function needs and output_args with the out-

put your function will give. Between the function-row and the end

you should write the code for the function.

For the particular function of this exercise, it will look as follows

function sumOfDiag = sumOfDiagonal(A)

[n,m] = size(A);

if n ,= m

error('A is not a square matrix')

end

sumOfDiag = sum(diag(A));

end

Where ,= is written as ~= in MATLAB. Save your function as an m-
file in your current folder, by the name of your function. In this case

it would be "sumOfDiagonal.m". Now you can use your function di-

rectly from the command window or from a script which is saved in

the same folder as your function.

To create a matrix in MATLAB use the following principle

my_matrix = [1 2; 3 4];

[ and ] begins and ends the matrix. Elements are separated by

space (or comma) and rows are separated by ;. The resulting matrix
is

(

1 2

3 4

)

0.3 Introduce y1(t) = y(t) and y2(t) = ẏ(t) in order to rewrite the initial
second-order differential equation into two first-order differential

equations as follows

ẏ1 = y2 (0.1)
ẏ2 = 3y1(t) − 7y2 (0.2)

The initial conditions for y1(t) and y2(t) are
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Solutions to chapter 0. Introduction to MATLAB and SIMULINK

y1(0) = y(0) = 0
y2(0) = ẏ(0) = 1

(0.1) and (0.2) can be written together on matrix form as follows

(

ẏ1

ẏ2

)

=
(

y2

3y1 − 7y2

)

=
(

0 1

3 −7

)(

y1

y2

)

Define v =
(

y1

y2

)

. Then, define f as the following function

f (t,v) = f (t,
(

y1

y2

)

) =
(

ẏ1

ẏ2

)

=
(

y2

3y1 − 7y2

)

=
(

0 1

3 −7

)(

y1

y2

)

In MATLAB this can be written as

f = @(t,v) [v(2); 3*v(1)−7*v(2)];

Or by matrix multiplication

f = @(t,v) [0 1; 3 −7]*v;

To solve the differential equation write the following code

[t_ode V] = ode45(f,[0 5],[0 1]);

The first input to ode45 is the right part of the differential equation,

the second input is the time span of the solution while the third

is the initial condition of the differential equation. V is a matrix

with two columns, the first column corresponds to y1(t) = y(t) and
the second column corresponds to y2(t) = ẏ(t). t_ode is the times
between 0 and 5 at which ode45 has calculated y1 and y2. Use the

following code to plot y(t) over 0 ≤ t ≤ 5

plot(t_ode,V(:,1))

0.4 The first order polynomial means that

b+ a = 3.9286
b+ 2a = 5.4059
b+ 3a = 6.0771
b+ 4a = 7.7145

In matrix form this becomes










1 1

2 1

3 1

4 1











⋅

(

a

b

)

=











3.9286

5.4059

6.0771

7.7145











(0.3)
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Solutions to chapter 0. Introduction to MATLAB and SIMULINK

We have two unknowns and four equations. Therefore, we need to

approximate a and b such that the distance between the line ax+ b
and the points is minimized in some sence.

If (0.3) is seen as S ⋅

(

a

b

)

= T , the following code will return the
values of a and b

x = S\T;

Where a = x(1) and b = x(2). This uses the least squares method

to fit ax + b to the points. Plot the points and the line in the same
plot to see the fit.
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Solutions to chapter 0. Introduction to MATLAB and SIMULINK

Solve the following exercises using SIMULINK in MATLAB. These ex-

ercises are taken from Exercises in MATLAB/Simulink, Signals and

Systems by Thomas Munther.

0.5 Start SIMULINK by writing simulink in the MATLAB command win-

dow. This makes the SIMULINK Library Browser window pop up.

Go to File → New → Model. In this window you can start to create
your SIMULINKmodel. Use the Library Browser to find appropriate

blocks and drag them into the model sheet. You can connect two

blocks by their connection spots.

p and b can be defined in the current workspace. Go to display →
blocks and check "Sorted Execution Order". This will numerate the

blocks in the order in which they are first activated.

0.6 a. Before running the simulation go to Simulation → Configuration

Parameters. In Solver Options choose Fixed-step and Solver → Dis-
crete. Set the sample time in each block to 1 [sec].

b. The only difference from the previous model is that the minus sign

in the sum-block is changed to a plus sign.
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Solutions to chapter 0. Introduction to MATLAB and SIMULINK
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Solutions to Chapter 1. Biochemical

Reactions

1.1 a. Denote the concentrations x = [X ] and y = [Y]

dx

dt
= −k1x + k−1y
dy

dt
= k1x − k−1y

b. Denote the concentrations x = [X ] and y = [Y]

dx

dt
= −2k1x2 + 2k−1y
dy

dt
= k1x2 − k−1y

c.

Denote the concentrations x = [X ], y = [Y] and z = [Z]

dx

dt
= −3k1x3y+ 3k−1z (1.1)

dy

dt
= −k1x3y+ k−1z (1.2)

dz

dt
= k1x3y− k−1z (1.3)

(1.4)

1.2 A matlab script may look as follows:

% Simulation of the substrate, enzyme and product concentrations in a MM

% example

% ds/dt = −k_1 *(se) + k_{−1}*c
% de/dt = −k_1 *(se) + (k_{−1} + k_2)*c

% dc/dt = k_1 *(se) − (k_{−1} + k_2)*c

% dp/dt = k_2 c

%−−−−−−−−−−−−−−−−−−−
% Initial conditions

s(1) = 0.15; % mmol/L

e(1) = 1e−2; % mmol/L

c(1) = 0; % mmol/L

p(1) = 0; % mmol/L

%−−−−−−−−−−−−−−−−−−−
% Parameters

k1 = 0.1;

k3 = 0.01; % k_{−1}
k2= 0.02;

%−−−−−−−−−−−−−−−−−−−

% Run discretized simulation
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Solutions to chapter 1. Biochemical Reactions

for k = 2:10000

s(k) = s(k−1) + k3*c(k−1) − k1*s(k−1)*e(k−1);
e(k) = e(k−1) + (k3+k2)*c(k−1) − k1*s(k−1)*e(k−1);
c(k) = c(k−1) − (k3+k2)*c(k−1) + k1*s(k−1)*e(k−1);
p(k) = p(k−1) + k2*c(k−1);

end

figure(1)

[ax,h1,h2] = plotyy(1:10000,[s' p'],1:10000,[e' c'])

legend('Substrate','Product','Enzyme','Complex')

xlabel('time [s]')

ylabel(ax(1),'Substrate/Product Concentration [mmol/L]')

ylabel(ax(2),'Enzyme/Complex Concentration [mmol/L]')

title('Simulation of enzymatic reaction')

% Run ode−solver simulation

% y = [S E C P]

dAll = @(t,y) [−k1*y(1)*y(2)+k3*y(3); ...

−k1*y(1)*y(2)+(k3+k2)*y(3); ...

k1*y(1)*y(2)−(k3+k2)*y(3); ...

k2*y(3)];

[t Y] = ode45(dAll,[0 10000],[0.15 1e−2 0 0])

figure(2)

[ax,h1,h2] = plotyy(t,[Y(:,1) Y(:,4)],t,[Y(:,2) Y(:,3)])

legend('Substrate','Product','Enzyme','Complex')

xlabel('time [s]')

ylabel(ax(1),'Substrate/Product Concentration [mmol/L]')

ylabel(ax(2),'Enzyme/Complex Concentration [mmol/L]')

title('Simulation of enzymatic reaction')

Doubling the enzymatic concentration doubles the production rate

since Vmax = k2 ⋅ e0. Likewise since Km = (k2 + k−1)/k1 = 0.3 and
V = Vmaxs/(Km + s), a doubling of s0 from Km/2 to Km means that
the initial reaction rate will become 1.5 times greater.

1.3 The plot indicates that the relationship between the reaction rate

and the substrate concentration goes to saturation in a M-M-like

behavoir, see Fig. 1.1. Vmax and Km are estimated as shown in the

plot.

Lineweaver-Burke plot: The Michaelis-Menten relationship between

substrate concentrations [S] states that:

v = Vmax[S]
Km + [S]

Taking the inverse yields:

1

v
= Km

Vmax

1

[S] +
1

Vmax

Now, the parameters Km/Vmax and 1/Vmax for this linear relation-
ship may be estimated from the plot as seen in Fig. 1.2.

1.4 Draw a graph of the compartment representation, see Fig 1.3. Next,
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Figure 1.2 Graphical estimation of Vmax and KM using the Lineweaver-Burke

plot.

determine the differential equations governing the reaction dynam-

ics:

d[S]
dt

= −k1[S][E] + k−1[C1] (1.5)
d[I]
dt

= k−3[C2] − k3[E][I] (1.6)
d[C1]
dt

= k1[S][E] − (k−1 + k2)[C1] (1.7)
d[C2]
dt

= k3[E][I] − k−3[C2] (1.8)
d[E]
dt

= (k2 + k−1)[C1] + k−3[C2] − k1[S][E] − k3[E][I] (1.9)
d[P]
dt

= k2[C1] (1.10)

Next, use the steady-state assumptions; d[C1]/dt = d[C2]/dt = 0 to
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Figure 1.3 Compartment model representation of the enzyme inhibition dynam-

ics.

get

[C1] =
k1

k−1 + k2
[S][E] (1.11)

[C2] =
k3

k−3
[E][I] (1.12)

The conservation of enzymatic mass gives

[E0] = [E] + [C1] + [C2] = [E](1+
k1

k−1 + k2
[S] + k3

k−3
[I]) (1.13)

Put Eq. (1.10), Eq. (1.11) and Eq. (1.13) together:

V = d[P]
dt

= k2[E0][S]
[S] + k1

k−1+k2 (1+
k3
k−3
[I])

(1.14)

1.5 Blood alcohol level

A matlab script may look as follows:

% BAL simulation

V = −15;% mg/(l*h)

K_m = 5;% mg/dl

%−−−−
VD = 10*(20 + 0.36*80−0.1*25); %dl

BAL(1:20) = zeros(20,1);

BAL(20) = 0.02*1000*0.8*1000/VD; % mg/dl

der = 0;

for k=21:1:240

BAL(k) = BAL(k−1) + der;

der = V/60*BAL(k)/(K_m + BAL(k));

end

plot([1:length(BAL)]/60,BAL)

title('Blood Alcohol Level after ingesting 2 cl alcohol ...
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Figure 1.4 Blood alcohol content according to the simulation example.

(about one pint of beer) in 20 minutes','Fontsize',10)

ylabel('BAL [mg/dl]','Fontsize',10)

xlabel('time [h]','Fontsize',10)

Running the code generates the plot in Fig. 1.4.

Another possibility is to use MATLABs built in solvers for odrinary

differential equations, such as ode45. The MATLAB-script would

then look something like

% BAL simulation

V = −15;% mg/(l*h)

K_m = 5;% mg/dl

VD = 10*(20 + 0.36*80−0.1*25); % dl

% The 'initial value' of the concentration [A] is actually

% the concentration in t = 20 min when the metabolization

% of the alcohol starts.

initial_value_A = 0.02*1000*0.8*1000/VD; % mg/dl

% Define the differential equation y(t) = [A](t)

dAdt = @(t,y) V/60*y/(K_m+y);

% Solve the differential equation

[t, Y] = ode45(dAdt, [0 220], initial_value_A);

t = (t+20)/60; % Shifting the time vector 20 min, and changing into

% hours instead of minutes.

Y = [zeros(size(0:0.1:(t(1)−0.01))) Y']; % Adding zeros to the

% value−vector for time 0−20 min.

t = [0:0.1:(t(1)−0.01) t']; % Adding the time between 0−20 minutes

% to the time vector.

plot(t,Y)

title('Blood Alcohol Level after ingesting 2 cl alcohol ...

(about one pint of beer) in 20 minutes','Fontsize',10)

ylabel('BAL [mg/dl]','Fontsize',10)

xlabel('time [h]','Fontsize',10)
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Solutions to Chapter 2. Model Building

and Linearization

2.1

a. By concentration of substrate, we have

dx1

dt
= −x1 + u

dx2

dt
= x1 − x2
y = x2

The states are x1 and x2. The input is u and the output is y.

b.









ẋ1

ẋ2







 =








−1 0

1 −1

















x1

x2







+








1

0







u

y=


 0 1












x1

x2









c.

G(s) = C(sI − A)−1B + D

= (0 1 )
(

s+ 1 0

−1 s+ 1

)−1(
1

0

)

= 1

(s+ 1)2 .

% State the state space matrices

A = [−1 0 ; 1 −1];
B = [1 ; 0];

C = [0 1];

D = []; % Empty matrix

% Construct the state space system

system = ss(A,B,C,D);

% Contruct the transfer function

G = tf(system)

% OR after having decided the transfer function

% analytically use

s = tf('s'); % To create the Laplace variable

G = 1/(s+1)^2;
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2.2

















ẋ1

ẋ2

ẋ3

















=

















0 1 0

0 0 1

−1 −2 −3

































x1

x2

x3

















+

















0

0

1

















u

y =


 1 0 0




















x1

x2

x3

















2.3 a.

ẋ1 = x2
ẋ2 = −

√
x1 − x1x2 + u2

y = x1

b. A stationary point implies ẋ1 = ẋ2 = 0. From the first equation
we directly obtain x2 = 0. Subsequently, the second equation yields√
x1 = u2. Hence there are infinitely many stationary points and
they can be parametrized through t as (x01, x02,u0) = (t4, 0, t).

c. u0 = 1 gives the stationary point (x01, x02,u0) = (1, 0, 1). We let

f1(x1, x2,u) = x2
f2(x1, x2,u) = −

√
x1 − x1x2 + u2

�(x1, x2,u) = x1

Do taylorexpansion of these functions in the stationary point and use

only the linear terms to linearize the system. Start by computing the

partial derivatives

� f1
�x1

= 0 � f1
�x2

= 1 � f1
�u = 0

� f2
�x1

= − 1

2
√
x1
− x2

� f2
�x2

= −x1
� f2
�u = 2u

��
�x1

= 1 ��
�x2

= 0 ��
�u = 0

At the stationary point we have

� f1
�x1

(x01, x02,u0) = 0
� f1
�x2

(x01, x02,u0) = 1
� f1
�u (x

0
1, x

0
2,u

0) = 0

� f2
�x1

(x01, x02,u0) = −
1

2

� f2
�x2

(x01, x02,u0) = −1
� f2
�u (x

0
1, x

0
2,u

0) = 2

��
�x1

(x01, x02,u0) = 1
��
�x2

(x01, x02,u0) = 0
��
�u(x

0
1, x

0
2,u

0) = 0

Use the following variable substitution
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Solutions to chapter 2. Model Building and Linearization

∆x1 = x1 − x01
∆x2 = x2 − x02

∆u = u− u0

The linearized system is then









∆ ẋ1

∆ ẋ2







 =












� f1
�x1 (x

0
1, x

0
2,u

0) � f1
�x2 (x

0
1, x

0
2,u

0)
� f2
�x1 (x

0
1, x

0
2,u

0) � f2
�x2 (x

0
1, x

0
2,u

0)





















∆x1

∆x2







+










� f1
�u (x01, x02,u0)
� f2
�u (x01, x02,u0)











∆u

∆y =




��
�x1 (x

0
1, x

0
2,u

0) ��
�x2 (x

0
1, x

0
2,u

0)












∆x1

∆x2







+ ���u(x
0
1, x

0
2,u

0)∆u

Where the derivates are given as their value in the stationary point.

Using the specific values gives









∆ ẋ1

∆ ẋ2







 =








0 1

−1
2
−1

















∆x1

∆x2







 +








0

2







 ∆u

∆y =


 1 0












∆x1

∆x2









2.4 At the sought operating point it holds that

0 = x21x2 + 1
0 = x1x22 + 1

y= arctan x2
x1
+ π 2

8

which yields x01 = −1, x02 = −1 and y0 = π
4
+ π 2

8
. Computation of the

partial derivatives now yields

� f1
�x1

= 2x1x2
� f1
�x2

= x21
� f1
�u =

√
2 cosu

� f2
�x1

= x22
� f2
�x2

= 2x1x2
� f2
�u = −

√
2 sinu

��
�x1

= −x2
x21 + x22

��
�x2

= x1

x21 + x22
��
�u = 4u

With the variable substitution

∆u = u− π

4

∆x1 = x1 + 1
∆x2 = x2 + 1

∆y = y− π

4
− π 2

8
.
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the linearized system becomes









∆̇x1

∆̇x2








=









2 1

1 2

















∆x1

∆x2








+









1

−1








∆u

∆y =




1
2
−1
2













∆x1

∆x2








+ π ∆u.

2.5 Blood Doping

The system dynamics are:

R(k) = (1− f ) ⋅ R(k− 1) + r(k), R(0) = Rre f (2.1)
r(k) = 0.9 ⋅ r(k− 1) + u(k), r(0) = f ⋅ Rre f (2.2)

u(k) =
{

0.025 if k = [1− 19, 41− 100]
0.05 if k = [21− 40]

(2.3)

The matrices in the Simulink discrete state space block thus are:

A =
[ (1− 1/120) 1

0 0.9

]

(2.4)

B =
[

0

1

]

(2.5)

C =
[

0 1

1 0

]

(2.6)

D =
[

0

0

]

(2.7)

(2.8)

The initial conditions are:

x0 =
[

0.25 ⋅ 120

0.25

]

(2.9)

Define epo in the Matlab workspace as:

>> epo(:,1)= 1:100;

>> epo(:,2) = 0.025*ones(100,1);

>> epo(20:40,2)= 0.05;

2.6 The Simulink model can be seen in Fig. 2.1.

If α becomes large the bacteria outgrow the neuthrophiles and un-
controlled bacterial growth occurs.
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Figure 2.1 Simulink model for the Predator-Prey system
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Solutions to Chapter 3. Control in

Physiology 1

3.1 a. The transfer function is

G(s) = C(sI − A)−1B + D

= (−1 1 )
(

s+ 2 0

0 s+ 3

)−1(
5

2

)

+ 2

= 2s
2 + 7s+ 1
s2 + 5s+ 6 .

From the transfer function it is easy to determine the differential

equation

Y(s) = G(s)U(s)
(s2 + 5s+ 6)Y(s) = (2s2 + 7s+ 1)U(s)

ÿ+ 5ẏ+ 6y = 2ü+ 7u̇+ u

b. The transfer function is

G(s) = C(sI − A)−1B + D

= (−2 1 )
(

s+ 7 −2
15 s− 4

)−1(
3

8

)

=

= 2s+ 3
s2 + 3s+ 2.

The differential equation becomes

Y(s) = G(s)U(s)
(s2 + 3s+ 2)Y(s) = (2s+ 3)U(s)

ÿ+ 3ẏ+ 2y= 2u̇+ 3u

3.2 a. Partial fraction expansion of the transfer function yields

G(s) = 2+ 2

s+ 3 −
5

s+ 2

and by applying the inverse Laplace transform, one obtains the im-

pulse response

h(t) = L−1G(s) = 2δ (t) + 2e−3t − 5e−2t, t ≥ 0.

Comment. Because the system matrix was given in diagonal form, another

possibility would have been to compute the impulse response as

h(t) = CeAtB + Dδ (t) =


−1 1












e−2t 0

0 e−3t

















5

2







+ 2δ (t), t ≥ 0.
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The step response is computed by e.g. integrating the impulse re-

sponse

y(t) =
∫ t

0

h(τ )dτ =
∫ t

0

(

2δ (τ ) + 2e−3τ − 5e−2τ
)

dτ

= 2+
[

5

2
e−2τ − 2

3
e−3τ

]t

0

= 1
6
+ 5
2
e−2t − 2

3
e−3t, t ≥ 0.

The step response can also be obtained by the inverse Laplace trans-

form as follows

y(t) = L−1(G(s)⋅1
s
) = L−1

(

2

s
+ 2

s(s+ 3) −
5

s(s+ 3)

)

= 1
6
+5
2
e−2t−2

3
e−3t, t ≥ 0.

In MATLAB, the following code can be used

% Define the matrices

A = [−2 0 ; 0 −3];
B = [5;2];

C = [−1 1];

D = 2;

% Create the state space representation of the system

system = ss(A,B,C,D);

% Impulse response

impulse(system)

% Step response

step(system)

b. The transfer function has the partial fraction expansion

G(s) = 1

s+ 1 +
1

s+ 2

and the impulse response becomes

h(t) = L−1G(s) = e−t + e−2t, t ≥ 0.

The step response is thus given by

y(t) =
∫ t

0

h(τ )dτ = 3
2
− e−t − 1

2
e−2t, t ≥ 0.

In MATLAB, the following code can be used

% Define the transfer function from the result in the previous exercise

s = tf('s'); % Determine frequency variable

G = (2*s+3)/(s^2+3*s+2);
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% Impulse response

impulse(G)

% Step response

step(G)

3.3 After the Laplace transform, one obtains

sX = AX + BU
Y = CX + DU

Solve for X

(sI − A)X = BU
X = (sI − A)−1BU

This gives

Y = C(sI − A)−1BU + DU =
(

C(sI − A)−1B + D
)

U

3.4 a. The poles are the solutions of the characteristic equation s2+4s+3 =
0, i.e. s = −1 and s = −3. The system lacks zeros. The poles are in
the left half-plane and the system is therefore stable.

b. The input (an impulse) has the Laplace transform U(s) = 1. The
output becomes

Y(s) = G(s)U(s) = 1

s2 + 4s+ 3 =
1

(s+ 1)(s+ 3)

Inverse Laplace transformation gives

h(t) = e
−t − e−3t
2

The following code results in a plot of the impulse response:

s = tf('s');

G = 1/(s^2+4*s+3);

impulse(G)

3.5 To be (asymptotically) stable, all eigenvalues of the system matrix
A must lie strictly within the left half plane (LHP). I.e. Re(λ i) < 0
∀ i.

The eigenvalues of A are given by the characteristic equation

det(λ I − A) = 0

which in this case has two solutions, λ1 = −i and λ2 = i. Since
the eigenvalues do not lie strictly within the LHP, the system is not

(asymptotically) stable.
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3.6 a.

Y = G1(U + G2Y)
Y(1− G1G2) = G1U

Y = G1

1− G1G2
U

b.

Y = G2(H1U + G1U + H2Y)
Y(1− G2H2) = (G2H1 + G2G1)U

Y = G2H1 + G2G1
1− G2H2

U

c. Introduce the auxiliary variable Z, being the output of G1

Z = G1(U + G3(Z + G2Z))
Z(1− G1G3 − G1G3G2) = G1U

Z = G1

1− G1G3 − G1G3G2
U

Y = G2G1

1− G1G3 − G1G3G2
U

3.7 a. The output is given by

y(t) = pG(3i)p sin
(

3t+ argG(3i)
)

where

pG(iω )p = 0.01
√
1+ 100ω 2√

1+ω 2
√
1+ 0.01ω 2

and

argG(iω ) = arctan 10ω − arctanω − arctan 0.1ω

For ω = 3 one obtains pG(iω )p = 0.0909 and argG(iω ) = −0.003
which gives

y(t) = 0.0909 sin(3t− 0.003)

b. Reading from the plot yields pG(3i)p ( 0.09 and argG(3i) ( 0. We
obtain

y(t) = 0.09 sin 3t
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Solutions to Chapter 4. Control in

Physiology 2

4.1 a. Laplace transformation of the differential equation yields

sY(s) + 0.01Y(s) = 0.01U(s)

The transfer function GP(s) is thus given by

Y(s) = GP(s)U(s) =
0.01

s+ 0.01U(s)

b. The block diagram of the closed loop system becomes

Σ
r e u y

GR GP

−1

The transfer function of the closed loop system becomes

G(s) = GP(s)GR(s)
1+ GP(s)GR(s)

c. GR(s) = K , K is a constant, and the transfer function of the closed
loop system becomes

G(s) = GP(s)GR(s)
1+ GP(s)GR(s)

=
0.01
s+0.01K

1+ 0.01
s+0.01K

= 0.01K

s+ 0.01+ 0.01K

d. The desired and actual characteristic polynomials are the same if

all their coefficients match. Identification of coefficients yields

0.1 = 0.01+ 0.01K \ K = 9

4.2 a. For the closed loop system it holds, when R = 0, that

U(s) = K (0− Y(s)) = −K (GP(s)U(s) + N(s))

from which one obtains

U(s) = −K
1+ KGP(s)

N(s)

Y(s) = GP(s)U(s) + N(s) =
1

1+ KGP(s)
N(s)

(4.1)
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b. Inserting GP(s) = 1
s+1 into (4.1) yields the relations

Y(s) = GP(s)U(s) + N(s) =
s+ 1

s+ 1+ K N(s) =: Gyn(s)N(s)

In stationarity it holds that

y(t) = ApGyn(iω )p sin(ω t+ argGyn(iω ))

= A
√
1+ω 2

√

(K + 1)2 +ω 2
sin

(

ω t+ arctanω − arctan ω

K + 1

)

c. With A = 1 and K = 1 the amplitudes of the oscillations

A =

√

1+ω 2

4+ω 2

For ω = 0.1 rad/s the amplitude become

A ( 0.5

while ω = 10 rad/s yields
A ( 1

4.3 a. The sensitivity function is given by

S(s) = 1

1+ GP(s)GR(s)
= 1

1+ 6.5
(s+1)3

= s3 + 3s2 + 3s+ 1
s3 + 3s2 + 3s+ 7.5

b. For ω = 0 rad/s we have pS(iω )p = 1/7.5. Constant load distur-
bances are thus damped by a factor 7.5. The sensitivity functions

has its maximum value pS(iω )p ( 10 at ω ( 1.6 rad/s.

4.4 The closed loop system becomes

{

ẋ = (A− BL)x + Blrr
y= Cx

The characteristic equation is thus

det(sI − A+ BL) = s2 + (3+ l1 + 2l2)s+ 2(1+ l1 + l2) = 0

We need (s+ 4)2 = s2 + 8s + 16 = 0. Identification of coefficients
yields l1 = 9, l2 = −2. The closed loop transfer function is G(s) =
C(sI − A+ BL)−1Blr. The stationary gain is G(0) is unity if

G(0) = C(−A+ BL)−1Blr =
lr

4
= 1

yielding lr = 4.

This type of controller can only be designed when the system is con-

trollable. Information on controllability is given in the basic course

in control.
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Solutions to Chapter

5. Pharmacokinetics and Tracers

5.1 C(t) is the concentration at time t. The initial condition and balance
equation of the system are the following

C0 = 300 [units/ml]
dC

dt
= −kC

The solution of the differential equation is

C(t) = C0e−kt

After 8 days, the concentration is halved. Therefore, if the half-life

is stated as t1/2 = 8, the concentration at t1/2 is given by

C(t1/2) =
C0

2
= C0e−kt1/2

Thus k is,

k = ln(2)
t1/2

= 0.6931
8

= 0.0866 days−1

Hence the formula for the concentration is given by

C(t) = C0e−0.0866⋅t [units/ml] (5.1)

When t = 7 [days]

C(7) = C0e−0.0866⋅7 = 163 [units/ml]

Plot equation (5.1) using MATLAB

5.2 Use the same procedure as in exercise 5.1 to get k. Then use the

following equation

log( C0

0.4 ⋅ C0
) = k ⋅ t

2.3

5.3 Use the same equation as in exercise 5.2. Set t = 25 [days] and
C0/C = 90/80 to determine k. Then determine t1/2 by using the
derived k and C0

C
= 2.

5.4 Sketch and discuss with your friend/TA.
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