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0. Introduction to MATLAB and SIMULINK

Solve the following exercises using MATLAB. These exercises are in-
spired by or fully extracted from EDAOQ17: Foreldsningsanteckningar,
OCTAVE/MATLAB by Christian Soderberg.

0.1

a. Plot y(x) = e */2cos(27x) when —6 < x < 3 by using the function
handle to create an anonymous function. Give your plot a title as well
as labels on the axes. Useful commands: fplot, xlabel, ylabel,
title.

b. Modify your code such that you only show values —4.5 < x < —1
and —10 < y < 10. Useful command: axis.

c. Integrate the function for —4.5 < x < —1. Useful commands: integral,
quad.

d. Find the solution to f(x) = 0 when f(x) = x3 + 2x — 1. Comment on
the answer. Useful command: fsolve.

0.2  Write a function which for every matrix A gives you the sum of the
diagonal elements of that matrix. Useful commands: diag, sum and
size.

0.3  Solve the differential equation

§+Ty—8y=0
¥(0)=0
y(0) =1

in the interval 0 < ¢ < 5 by using MATLABs solver ode45.

0.4 Try to fit a first order polynomial ax + b to the following measure-
ments

x|y
1 | 3.9286
2 | 5.4059
3| 6.0771
4 | 7.7145




Chapter 0. Introduction to MATLAB and SIMULINK

Solve the following exercises using STMULINK in MATLAB. These ex-
ercises are taken from Exercises in MATLAB/ Simulink, Signals and
Systems by Thomas Munther.

0.5 Investigate the bacterial growth in a jam pot. Assume that the num-
ber of born bacteria is increasing proportional to the existing num-
ber of bacteria x and the number dying is proportional to the existing
number in square. This gives the following differential equation

@ bx — px®

where b = 1 [1/hour] is the birth rate constant and p = 0.5 [1/(bacteria-hour)]
is the death rate constant. Assume x(0) = 100 [bacteria]. Use SIMULINK

to show how the solution to the differential equation looks like.

0.6 Some physiological systems are better described in discrete time

which gives rise to difference equations. Show the behavior of y in
the two following difference equations

ye=—05"y_1+x

Ye =05 y_1+x

where x is the input signal to the system, in shape of a step starting
in ¢t = 0 with amplitude 1 and y_; = 1. y; is the value of y in time
step t.



1. Biochemical Reactions

1.1

1.2

1.3

14

Use the law of mass balance to derive the differential equations
govering the production of X and Y:

ky
X+X =Y
k_1

Simulate and plot the concentrations for the substrate S, enzyme
E, substrate-enzyme complex C and the end product P for the basic
enzymatic reaction

k
S+E—c™piE
k_1

using the following set of parameters; £; = 0.1, 2_; = 0.01 and ks =
0.02, and with the following initial conditions [S]y = 0.15 [mmol/]],
[E]o = 0.01 [mmol/]], [C]p = 0 [mmol/]l] and [P]y = 0 [mmol/l]. What
happens if the initial concentration of the enzyme is doubled? What
happens if the initial concentration of the substrate is doubled? How
does these results correspond to the Michealis-Menten parameters?

The data in Table 1.1 describes the concentration and reaction rates
of a chemical process. Is it an enzymatic reaction following the
Michaelis-Menten relationship? Can you give some rough estimates
of V,ur and K, from this graph? Plot the inverse of the concentra-
tion versus the inverse of the reaction rate. This plot is commonly
reffered to as a Lineweaver-Burk plot. Can you give some rough
estimates of V,,,, and K,, from this graph as well?

Competetive Inhibition: Some enzymes may bind other substances
than the target substrate to the binding site, thereby inhibiting the
formation of the intended substrate-enzyme complex and the subse-
quent end-product. Such a situation is characterized by the following
reaction dynamics:

k
S+E¢IC1E‘P+E

k_y

k3
I+ E—C(C
k_3



Chapter 1. Biochemical Reactions

1.5

Table 1.1 Reaction Data for problem 3
Substrate Reaction

Concentration [mM] Velocity [mM/s]

0.1 0.04
0.2 0.08
0.5 0.17
1.0 0.24
2.0 0.32
3.5 0.39
5.0 0.42

Derive the following relationship for the reaction velocity of the prod-
uct reaction, considering steady-state conditions for the enzyme and
enzyme complexes and preservation of the total enzyme content:

Vinax [S]

V= B+ En (L + O/ED)

where [I] is the concentration of the inhibitor, K, = (k_1 + k2)/k1
and K] = k_3/k3.

Alcohol metabolism: Clearance of the blood alcohol level (BAL) [A]
[mg/dl] from the liver is metabolized by more than 20 different en-
zymes. From experimental data the total clearance effect of these
enzymes has been lumped into a common Michaelis-Menten rela-

tionship with population average V,,,, = —15[mg/(dl- h)] and a
K,, =5 [mg/dl].

d[A] _ Vinax[A]

dt K., + [A]

To calculate the BAL, the total distribution volume of the body for
alhocol has to be known. The following relationship between the total
water volume, representing this distribution volume Vp [I], and the
weight mpw [kg], gender and age Y [years| of the person has been
suggested.

Vp =20+ 0.36mgw —0.1Y, Men
Vp =14+ 0.25mpw, Women

Assuming that a 25 year old man of 80 kg consumes a drink contain-
ing 2 cl of alcohol (density 800 kg/m3) at a fasting state. Digestion
of alcohol is very rapid on an empty stomach, and you may assume
that the total alcohol content has reached the blood stream after 20
minutes whereafter metabolization is considered to start. Simulate
and plot the BAL level for the four hours following the drink.



Solutions to Chapter 0. Introduction to
MATLAB and SIMULINK

0.1 a.

Solve the following exercises using MATLAB. These exercises are in-
spired by or fully extracted from EDAOQ17: Foreldsningsanteckningar,
OCTAVE/MATLAB by Christian Soderberg.

Create an anonymous function using the function handle. This func-
tion is only saved in your workspace until you close MATLAB (or
clear you workspace by the clear all command). In case you
would like to save your function as a file in your current folder
(from where you can reach it at another time), use a function m-file
(go to new — function).

y = Q(x) exp(—x/2)xcos (2+«pi*x);

figure

fplot (y, [—6 31)
title('My fancy plot')
xlabel ("x")
ylabel('y")

figure is a command which is useful when you want to create
several plots in the same script. Use the help-command whenever
you need information about one of MATLABs buildt-in functions. In
this case you would write help figure in the command window
and the description of the function should appear.

axis([—4.5 —1 —10 10])

% Rewrite y to be accepted by quad/integral (read in the
% description of quad/integral to understand why) .
y = Q(x) exp(—x/2).*cos (2+pix*x);

integral(y,—4.5,-1)

o

s Or
quad (y,—4.5,-1)

f = Q(x) x"3+2+x—1;
solution = fsolve(f,0)

The answer is 0.4534. Write format long in the command window
(then use the fsolve command) to get more decimals in the answer.
Due to it being numerically calculated f(0.4534) is approximately
Zero.



Solutions to chapter 0. Introduction to MATLAB and SIMULINK

0.2

0.3

Go to new — function. A file with a function-shell will appear. The
function shell looks like:

function [ output_args ] = untitled( input_args )
$UNTITLED Summary of this function goes here

% Detailed explanation goes here

end

Replace untitled with the name of your function, input_args
with the input your function needs and output_args with the out-
put your function will give. Between the funct ion-row and the end
you should write the code for the function.

For the particular function of this exercise, it will look as follows

function sumOfDiag = sumOfDiagonal (A)
[n,m] = size (A);

if n # m
error('A is not a square matrix')
end

sumOfDiag = sum(diag(A));
end

Where # is written as ~= in MATLAB. Save your function as an m-
file in your current folder, by the name of your function. In this case
it would be "sumOfDiagonal.m". Now you can use your function di-
rectly from the command window or from a script which is saved in
the same folder as your function.

To create a matrix in MATLAB use the following principle

my_matrix = [1 2; 3 4];

[ and ] begins and ends the matrix. Elements are separated by
space (or comma) and rows are separated by ;. The resulting matrix

is
(s 4)
3 4
Introduce y;1(t) = y(¢) and yo(¢) = y(¢) in order to rewrite the initial

second-order differential equation into two first-order differential
equations as follows

Y1 =92 (0.1)
yo = 3y1(t) — Ty2 (0.2)

The initial conditions for y;(¢) and ys(¢) are



0.4

Solutions to chapter 0. Introduction to MATLAB and SIMULINK

¥1(0) =x(0) =0
y2(0) =y(0) =1

(0.1) and (0.2) can be written together on matrix form as follows

()= (o2 )= (6 20 ()

At
Y2

fev) = f(t, @D) = (i;) = <3y1y_27y2> B (g —17> (ﬁ)

In MATLAB this can be written as

Define v = < > Then, define f as the following function

f=0Q(t,v) [v(2); 3*v(1)=T*v(2)];

Or by matrix multiplication

f=20Q(t,v) [01; 3 —=T7]*v;

To solve the differential equation write the following code

[t_ode V] = oded45(£, [0 5],[0 11);

The first input to ode 45 is the right part of the differential equation,
the second input is the time span of the solution while the third
is the initial condition of the differential equation. Vv is a matrix
with two columns, the first column corresponds to y;(¢) = y(¢) and
the second column corresponds to y2(¢) = y(¢). t_ode is the times
between 0 and 5 at which ode45 has calculated y; and yy. Use the
following code to plot y(¢) over 0 <t <5

plot (t_ode,V(:,1))

The first order polynomial means that

b+a=3.9286
b + 2a = 5.4059
b+ 3a =6.0771
b+ 4a = 7.7145

In matrix form this becomes

11 3.9286
2 1| /a 5.4059

. - (0.3)
3 1| \» 6.0771
41 7.7145



Solutions to chapter 0. Introduction to MATLAB and SIMULINK

We have two unknowns and four equations. Therefore, we need to
approximate a and b such that the distance between the line ax + b
and the points is minimized in some sence.

If (0.3) is seen as S - <ab> = T, the following code will return the

values of ¢ and b

x = S\T;

Wherea = x (1) andb = x(2). This uses the least squares method
to fit ax + b to the points. Plot the points and the line in the same
plot to see the fit.

10



Solutions to chapter 0. Introduction to MATLAB and SIMULINK

Solve the following exercises using STMULINK in MATLAB. These ex-
ercises are taken from Exercises in MATLAB/ Simulink, Signals and
Systems by Thomas Munther.

0.5 Start SIMULINK by writing simulink in the MATLAB command win-
dow. This makes the SIMULINK Library Browser window pop up.
Go to File — New — Model. In this window you can start to create
your SIMULINK model. Use the Library Browser to find appropriate
blocks and drag them into the model sheet. You can connect two
blocks by their connection spots.

Gain
; |=
T S . — 1
_ Ll 5
Intagratar Seape
Gain1
P i: X g

Froduct
p and b can be defined in the current workspace. Go to display —
blocks and check "Sorted Execution Order". This will numerate the
blocks in the order in which they are first activated.

0.6 a. Before running the simulation go to Simulation — Configuration
Parameters. In Solver Options choose Fixed-step and Solver — Dis-
crete. Set the sample time in each block to 1 [sec].

]

Scope

¥

Step Delay

D_5|L.

Gain

b. The only difference from the previous model is that the minus sign
in the sum-block is changed to a plus sign.

11



Solutions to chapter 0. Introduction to MATLAB and SIMULINK

Scope

Step Delay

D_5L

Gain

12



Solutions to Chapter 1. Biochemical
Reactions

1.1 a. Denote the concentrations x = [X] and y = [Y]

d

d—:: =—kix+k_1y
d
d_?f} =kix —k_1y

b. Denote the concentrations x = [X] and y = [Y]

d
ax =-—2k1x24—2k_1y

dt
d
d—:;/ = k1x2 — k_ly

1.2 A matlab script may look as follows:

% Simulation of the substrate, enzyme and product concentrations in a MM
% example

% ds/dt = —k_1 *(se) + k_{—1}=*c
% de/dt = —k_1 *(se) + (k_{—1} + k_2)xc
% dc/dt = k_1 % (se) — (k_{—1} + k_2)=*c

% dp/dt = k_2 c

itial conditions
= 0.15; % mmol/L
= le—2; % mmol/L
= 0; % mmol/L

= 0; % mmol/L

R
vvvv:j
|

o

%5 Parameters

k1 = 0.1;
k3 = 0.01; % k_{—1}
k2= 0.02;

o

o

% Run discretized simulation

for k = 2:10000
s(k) = s(k—1) + k3xc(k—1) — klxs(k—1)*e(k—1);
e(k) = e(k—1) + (k3+k2)*c(k—1) — kl*s(k—1)~*e(k—1);
c(k) = c(k=1) — (k3+k2)*c(k—1) + kl*s(k—1)=*e(k—1);
p(k) = p(k—=1) + k2*c(k—1);

end

figure (1)

[ax,hl,h2] = plotyy(1:10000,[s' p'],1:10000,[e"' c'])
legend ('Substrate', 'Product', '"Enzyme', 'Complex")

xlabel ('time [s]"')

ylabel (ax (1), 'Substrate/Product Concentration [mmol/L]")
ylabel (ax (2), '"Enzyme/Complex Concentration [mmol/L]"')
title('Simulation of enzymatic reaction')

13



Solutions to chapter 1. Biochemical Reactions

oe

Run ode—solver simulation
$ vy =[S ECP]

dAll = Q(t,y) [—klxy(l)xy(2)+k3xy(3);
—k1xy (1) xy (2)+(k3+k2) *xy (3);
klxy (1) *y(2)—(k3+tk2)*y (3);
k2xy (3)1;

[t Y] = ode45(dAll, [0 10000],[0.15 1le—2 0O 01])

figure(2)

[ax,hl,h2] = plotyy(t, [Y(:,1) Y(:,4)1,t,[Y(:,2) Y(:,3)])
legend('Substrate', 'Product', 'Enzyme', 'Complex"')

xlabel ('time [s]")

ylabel (ax (1), 'Substrate/Product Concentration [mmol/L]")
ylabel (ax(2), 'Enzyme/Complex Concentration [mmol/L]")
title('Simulation of enzymatic reaction')

Doubling the enzymatic concentration doubles the production rate
since Vi = ko - 9. Likewise since K,,, = (k2 + k_1)/k1 = 0.3 and
V = Vyaxs/(Km + 8), a doubling of sy from K, /2 to K,, means that
the initial reaction rate will become 1.5 times greater.

1.3  The plot indicates that the relationship between the reaction rate
and the substrate concentration goes to saturation in a M-M-like
behavoir, see Fig. 1.1. V,,,,,» and K,, are estimated as shown in the
plot.

Reaction rate vs Substrate Concentration

o T T T

ol -

03— —

03— —

Reaction rate
§
L

2 3
Ky Substrate Concentration

Figure 1.1 Graphical estimation of V., and Ky,

Lineweaver-Burke plot: The Michaelis-Menten relationship between
substrate concentrations [S] states that:

~ Kn + 18]
Taking the inverse yields:

1 K, 1 1

=" - 4~
v Vﬁax[s] Vimax

Now, the parameters K,/ Vyax and 1/V,,,, for this linear relation-
ship may be estimated from the plot as seen in Fig. 1.2.

14



Solutions to chapter 1. Biochemical Reactions

Lineweaver-Burke plot
T T T

Inverse of Reaction rate

o 1 2 3

4 s G
Inverse of Substrate Concentration

Figure 1.2 Graphical estimation of V,,,, and Kj; using the Lineweaver-Burke
plot.

1.4  Draw a graph of the compartment representation, see Fig 1.3. Next,

Figure 1.3 Compartment model representation of the enzyme inhibition dynam-
ics.

determine the differential equations governing the reaction dynam-

15



Solutions to chapter 1. Biochemical Reactions

1.5

16

ics:

d[S]

dt = —k1[S][E] + k_1[C1] (1.1)
% = k_3[Co] — ks[E][]] (1.2)
d[gﬂ = k1[S][E] — (k-1 + k2)[C1] (1.3)
d£10t2] = k3[E|[I] — k—5[Ca] (1.4)
% = (ko + k—_1)[C1] + k—3[Cs] — k1[S][E] — k3| E][I] (1.5)
% = Fa[C1] (1.6)

Next, use the steady-state assumptions; d[C]/dt = d[Cs]/dt = 0 to
get

k1
k_

[Ca] = k—_3[E][11 (1.8)

[Ci] = [S] [E] (1.7)

The conservation of enzymatic mass gives

k1

[Eo] = [E] + [C1] + [Co] = [E](1 + b1+ ks

[S] + _33 1) (19

Put Eq. (1.6), Eq. (1.8) and Eq. (1.9) together:

di (S|4 5 s (L4 22(1)

Blood alcohol level
A matlab script may look as follows:

% BAL simulation
V = —15;% mg/ (1+h)
K_m = 5;% mg/dl

VD = 10% (20 + 0.36%x80—0.1%25); %dl
BAL(1:20) = zeros(20,1);
BAL(20) = 0.02%1000%«0.8%1000/VD; % mg/dl
der = 0;
for k=21:1:240

BAL (k) = BAL(k—1) + der;

der = V/60+BAL(k)/ (K_m + BAL(k));
end

plot ([1:length (BAL)]/60,BAL)

title('Blood Alcohol Level after ingesting 2 cl alcohol ...
(about one pint of beer) in 20 minutes', 'Fontsize',10)
ylabel ('BAL [mg/dl]', 'Fontsize',10)

xlabel ('time [h]', '"Fontsize',10)



Solutions to chapter 1. Biochemical Reactions

Blood Alcohol Level after ingesting 2 cl alcohol (about one pint of beer) in 20 minutes
T T T T T T T

BAL [mg/dl]

time [h]

Figure 1.4 Blood alcohol content according to the simulation example.

Running the code generates the plot in Fig. 1.4.

Another possibility is to use MATLABS built in solvers for odrinary
differential equations, such as ode45. The MATLAB-script would
then look something like

% BAL simulation

V = —15;% mg/ (1*h)
Km = 5;% mg/dl
VD = 10% (20 + 0.36%x80—0.1%25); % dl

The 'initial value' of the concentration [A] 1s actually
the concentration in t = 20 min when the metabolization
of the alcohol starts.

o oo oe

initial_value_A = 0.02x1000x0.8x1000/VD; % mg/dl

% Define the differential equation y(t) = [A] (t)
dAdt = @(t,y) V/60*y/ (K_m+y);

% Solve the differential equation
[t, Y] = oded45(dAdt, [0 220], initial_value_A);
t = (t+20)/60; % Shifting the time vector 20 min, and changing into

o\

hours instead of minutes.

= [zeros(size(0:0.1:(t(1)—0.01))) Y']; % Adding zeros to the
value—vector for time 0—20 min.

= [0:0.1:(£(1)—0.01) t']; % Adding the time between 0—20 minutes
to the time vector.

<

o\

s

o

plot (t,Y)

title('Blood Alcohol Level after ingesting 2 cl alcohol
(about one pint of beer) in 20 minutes', 'Fontsize',10)
ylabel ('BAL [mg/dl]', 'Fontsize',10)

xlabel ('time [h]', 'Fontsize',10)
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