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0. Introduction to MATLAB and SIMULINK

Solve the following exercises using MATLAB. These exercises are in-

spired by or fully extracted from EDA017: Föreläsningsanteckningar,

OCTAVE/MATLAB by Christian Söderberg.

0.1

a. Plot y(x) = e−x/2cos(2π x) when −6 ≤ x ≤ 3. Give your plot a title
as well as labels on the axes.

b. Modify your code such that you only show values −4.5 ≤ x ≤ −1
and −10 ≤ y ≤ 10.

c. Integrate the function for −4.5 ≤ x ≤ −1.

d. Find the solution to f (x) = 0 when f (x) = x3+2x−1. Comment on
the answer.

0.2 Write a function which for every matrix A gives you the sum of the

diagonal elements of that matrix.

0.3 Solve the differential equation

ÿ+ 7ẏ− 3y = 0

y(0) = 0

ẏ(0) = 1

in the interval 0 ≤ t ≤ 5 by using a solver of your choice.

0.4 Try to fit a first order polynomial ax + b to the following measure-
ments

x y

1 3.9286

2 5.4059

3 6.0771

4 7.7145

3



Chapter 0. Introduction to MATLAB and SIMULINK

Solve the following exercises using SIMULINK in MATLAB. These ex-

ercises are taken from Exercises in MATLAB/Simulink, Signals and

Systems by Thomas Munther.

0.5 Investigate the bacterial growth in a jam pot. Assume that the num-

ber of born bacteria is increasing proportional to the existing num-

ber of bacteria x and the number dying is proportional to the existing

number in square. This gives the following differential equation

dx

dt
= bx − px2

where b = 1 [1/hour] is the birth rate constant and p = 0.5 [1/(bacteria⋅hour)]
is the death rate constant. Assume x(0) = 100 [bacteria]. Use SIMULINK
to show how the solution to the differential equation looks like.

0.6 Some physiological systems are better described in discrete time

which gives rise to difference equations. Show the behavior of y in

the two following difference equations

a.

yt = −0.5 ⋅ yt−1 + xt

b.

yt = 0.5 ⋅ yt−1 + xt

where x is the input signal to the system, in shape of a step starting

in t = 0 with amplitude 1 and y−1 = 1. yt is the value of y in time
step t.
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1. Biochemical Reactions

1.1 Use the law of mass balance to derive the differential equations

govering the production of X and Y:

a.

X
k1
−−TS−−
k−1

Y

b.

X + X
k1
−−TS−−
k−1

Y

1.2 Simulate and plot the concentrations for the substrate S, enzyme

E, substrate-enzyme complex C and the end product P for the basic

enzymatic reaction

S+ E
k1
−−TS−−
k−1

C
k2
−T P + E

using the following set of parameters; k1 = 0.1, k−1 = 0.01 and k2 =
0.02, and with the following initial conditions [S]0 = 0.15 [mmol/l],
[E]0 = 0.01 [mmol/l], [C]0 = 0 [mmol/l] and [P]0 = 0 [mmol/l]. What
happens if the initial concentration of the enzyme is doubled? What

happens if the initial concentration of the substrate is doubled? How

does these results correspond to the Michealis-Menten parameters?

1.3 The data in Table 1.1 describes the concentration and reaction rates

of a chemical process. Is it an enzymatic reaction following the

Michaelis-Menten relationship? Can you give some rough estimates

of Vmax and Km from this graph? Plot the inverse of the concentra-

tion versus the inverse of the reaction rate. This plot is commonly

reffered to as a Lineweaver-Burk plot. Can you give some rough

estimates of Vmax and Km from this graph as well?

1.4 Competetive Inhibition: Some enzymes may bind other substances

than the target substrate to the binding site, thereby inhibiting the

formation of the intended substrate-enzyme complex and the subse-

quent end-product. Such a situation is characterized by the following

reaction dynamics:

S+ E
k1
−−TS−−
k−1

C1
k2
−T P+ E

I + E
k3
−−TS−−
k−3

C2
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Chapter 1. Biochemical Reactions

Table 1.1 Reaction Data for problem 3

Substrate Reaction

Concentration [mM] Velocity [mM/s]

0.1 0.04

0.2 0.08

0.5 0.17

1.0 0.24

2.0 0.32

3.5 0.39

5.0 0.42

Derive the following relationship for the reaction velocity of the prod-

uct reaction, considering steady-state conditions for the enzyme and

enzyme complexes and preservation of the total enzyme content:

V =
Vmax[S]

[S] + Km(1+ [I]/K I)

where [I] is the concentration of the inhibitor, Km = (k−1 + k2)/k1
and K I = k−3/k3.

1.5 Alcohol metabolism: Clearance of the blood alcohol level (BAL) [A]
[mg/dl] from the liver is metabolized by more than 20 different en-
zymes. From experimental data the total clearance effect of these

enzymes has been lumped into a common Michaelis-Menten rela-

tionship with population average Vmax = −15[mg/(dl⋅ h)] and a
Km = 5 [mg/dl].

d[A]

dt
=
Vmax[A]

Km + [A]

To calculate the BAL, the total distribution volume of the body for

alhocol has to be known. The following relationship between the total

water volume, representing this distribution volume VD [l], and the
weight mBW [kg], gender and age Y [years] of the person has been
suggested.

VD = 20+ 0.36mBW − 0.1Y, Men

VD = 14+ 0.25mBW , Women

Assuming that a 25 year old man of 80 kg consumes a drink contain-

ing 2 cl of alcohol (density 800 kg/m3) at a fasting state. Digestion
of alcohol is very rapid on an empty stomach, and you may assume

that the total alcohol content has reached the blood stream after 20

minutes whereafter metabolization is considered to start. Simulate

and plot the BAL level for the four hours following the drink.
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Solutions to Chapter 0. Introduction to

MATLAB and SIMULINK

Solve the following exercises using MATLAB. These exercises are in-

spired by or fully extracted from EDA017: Föreläsningsanteckningar,

OCTAVE/MATLAB by Christian Söderberg.

0.1 % a

y = @(x) exp(−x/2)*cos(2*pi*x);
figure

fplot(y,[−6 3])

title('My fancy plot')

xlabel('x')

ylabel('y')

% b

axis([−4.5 −1 −10 10])

% c

% Rewrite y to be accepted by quad/integral

y = @(x) exp(−x/2).*cos(2*pi*x);

integral(y,−4.5,−1)
% or

quad(y,−4.5,−1)

% d

f = @(x) x^3+2*x−1;
sol = fsolve(f,0);

The answer is 0.4534. Write format long in the command window

to get more decimals in the answer. Due to it being numerically

calculated f (0.4534) is approximately zero.

0.2 Go to new → function.

function sumOfDiag = sumOfDiagonal(A)

[n,m] = size(A);

if n ,= m

error('A is not a square matrix')

end

sumOfDiag = sum(diag(A));

end

0.3 Introduce y1 = y and y2 = ẏ. The differential equation can then be
rewritten as follows
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Solutions to chapter 0. Introduction to MATLAB and SIMULINK

ẏ1 = y2

ẏ2 = 3y1 − 7y2

y1(0) = 0

y2(0) = 1

To solve this system of differential equations we define the following

function

f (t,

(

y1

y2

)

) =

(

y2

3y1 − 7y2

)

In MATLAB this can be written as

f = @(t,y) [y(2); 3*y(1)−7*y(2)];

Or by matrix multiplication

f = @(t,y) [0 1; 3 −7]*y;

To solve the differential equation write the following code

[t Y] = ode45(f,[0 5],[0 1]);

Y is a matrix with two colons, the first colon corresponds to our

initial variable y.

0.4 The first order polynomial means that

b+ a = 3.9286

b+ 2a = 5.4059

b+ 3a = 6.0771

b+ 4a = 7.7145

In matrix form this becomes










1 1

2 1

3 1

4 1











⋅

(

a

b

)

=











3.9286

5.4059

6.0771

7.7145











If this is seen as S ⋅

(

a

b

)

= T , the following code will return the

values of a and b

x = S\T;

a = x(1)

b = x(2)
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Solutions to chapter 0. Introduction to MATLAB and SIMULINK

Solve the following exercises using SIMULINK in MATLAB. These ex-

ercises are taken from Exercises in MATLAB/Simulink, Signals and

Systems by Thomas Munther.

0.5 Start SIMULINK by writing simulink in the MATLAB command win-

dow. This makes the SIMULINK Library Browser window pop up.

Go to File → New → Model. In this window you can start to create
your SIMULINKmodel. Use the Library Browser to find appropriate

blocks and drag them into the model sheet. You can connect two

blocks by their connection spots.

p and b can be defined in the current workspace.

0.6 a. Before running the simulation go to Simulation → Configuration

Parameters. In Solver Options choose Fixed-step and Solver → Dis-
crete. Set the sample time in each block to 1 [sec].

b. The only difference from the previous model is that the minus sign

in the sum-block is changed to a plus sign.
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Solutions to chapter 0. Introduction to MATLAB and SIMULINK
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Solutions to Chapter 1. Biochemical

Reactions

1.1 a. Denote the concentrations x = [X ] and y = [Y]

dx

dt
= −k1x + k−1y

dy

dt
= k1x − k−1y

b. Denote the concentrations x = [X ] and y = [Y]

dx

dt
= −2k1x

2 + 2k−1y

dy

dt
= k1x

2 − k−1y

1.2 A matlab script may look as follows:

% Simulation of the substrate, enzyme and product concentrations in a MM

% example

% ds/dt = −k_1 *(se) + k_{−1}*c
% de/dt = −k_1 *(se) + (k_{−1} + k_2)*c

% dc/dt = k_1 *(se) − (k_{−1} + k_2)*c

% dp/dt = k_2 c

%−−−−−−−−−−−−−−−−−−−
% Initial conditions

s(1) = 0.15; % mmol/L

e(1) = 1e−2; % mmol/L

c(1) = 0; % mmol/L

p(1) = 0; % mmol/L

%−−−−−−−−−−−−−−−−−−−
% Parameters

k1 = 0.1;

k3 = 0.01; % k_{−1}
k2= 0.02;

%−−−−−−−−−−−−−−−−−−−

% Run discretized simulation

for k = 2:10000

s(k) = s(k−1) + k3*c(k−1) − k1*s(k−1)*e(k−1);
e(k) = e(k−1) + (k3+k2)*c(k−1) − k1*s(k−1)*e(k−1);
c(k) = c(k−1) − (k3+k2)*c(k−1) + k1*s(k−1)*e(k−1);
p(k) = p(k−1) + k2*c(k−1);

end

figure(1)

[ax,h1,h2] = plotyy(1:10000,[s' p'],1:10000,[e' c'])

legend('Substrate','Product','Enzyme','Complex')

xlabel('time [s]')

ylabel(ax(1),'Substrate/Product Concentration [mmol/L]')

ylabel(ax(2),'Enzyme/Complex Concentration [mmol/L]')

title('Simulation of enzymatic reaction')
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Solutions to chapter 1. Biochemical Reactions

% Run ode−solver simulation

% y = [S E C P]

dAll = @(t,y) [−k1*y(1)*y(2)+k3*y(3); ...

−k1*y(1)*y(2)+(k3+k2)*y(3); ...

k1*y(1)*y(2)−(k3+k2)*y(3); ...

k2*y(3)];

[t Y] = ode45(dAll,[0 10000],[0.15 1e−2 0 0])

figure(2)

[ax,h1,h2] = plotyy(t,[Y(:,1) Y(:,4)],t,[Y(:,2) Y(:,3)])

legend('Substrate','Product','Enzyme','Complex')

xlabel('time [s]')

ylabel(ax(1),'Substrate/Product Concentration [mmol/L]')

ylabel(ax(2),'Enzyme/Complex Concentration [mmol/L]')

title('Simulation of enzymatic reaction')

Doubling the enzymatic concentration doubles the production rate

since Vmax = k2 ⋅ e0. Likewise since Km = (k2 + k−1)/k1 = 0.3 and
V = Vmaxs/(Km + s), a doubling of s0 from Km/2 to Km means that
the initial reaction rate will become 1.5 times greater.

1.3 The plot indicates that the relationship between the reaction rate

and the substrate concentration goes to saturation in a M-M-like

behavoir, see Fig. 1.1. Vmax and Km are estimated as shown in the

plot.
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Figure 1.1 Graphical estimation of Vmax and KM

Lineweaver-Burke plot: The Michaelis-Menten relationship between

substrate concentrations [S] states that:

v =
Vmax[S]

Km + [S]

Taking the inverse yields:

1

v
=
Km

Vmax

1

[S]
+

1

Vmax

Now, the parameters Km/Vmax and 1/Vmax for this linear relation-
ship may be estimated from the plot as seen in Fig. 1.2.
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Solutions to chapter 1. Biochemical Reactions
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Figure 1.2 Graphical estimation of Vmax and KM using the Lineweaver-Burke

plot.

1.4 Draw a graph of the compartment representation, see Fig 1.3. Next,

[E]

−3

3k

k2

3k

k−3

k−1

k−1

1k 1k

1

2k

[I]

[C ]

[S]

2[P][C ]

k

Figure 1.3 Compartment model representation of the enzyme inhibition dynam-

ics.

determine the differential equations governing the reaction dynam-
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Solutions to chapter 1. Biochemical Reactions

ics:

d[S]

dt
= −k1[S][E] + k−1[C1] (1.1)

d[I]

dt
= k−3[C2] − k3[E][I] (1.2)

d[C1]

dt
= k1[S][E] − (k−1 + k2)[C1] (1.3)

d[C2]

dt
= k3[E][I] − k−3[C2] (1.4)

d[E]

dt
= (k2 + k−1)[C1] + k−3[C2] − k1[S][E] − k3[E][I] (1.5)

d[P]

dt
= k2[C1] (1.6)

Next, use the steady-state assumptions; d[C1]/dt = d[C2]/dt = 0 to
get

[C1] =
k1

k−1 + k2
[S][E] (1.7)

[C2] =
k3

k−3
[E][I] (1.8)

The conservation of enzymatic mass gives

[E0] = [E] + [C1] + [C2] = [E](1+
k1

k−1 + k2
[S] +

k3

k−3
[I]) (1.9)

Put Eq. (1.6), Eq. (1.8) and Eq. (1.9) together:

V =
d[P]

dt
=

k2[E0][S]

[S] + k1
k−1+k2

(1+ k3
k−3
[I])

(1.10)

1.5 Blood alcohol level

A matlab script may look as follows:

% BAL simulation

V = −15;% mg/(l*h)

K_m = 5;% mg/dl

%−−−−
VD = 10*(20 + 0.36*80−0.1*25); %dl

BAL(1:20) = zeros(20,1);

BAL(20) = 0.02*1000*0.8*1000/VD; % mg/dl

der = 0;

for k=21:1:240

BAL(k) = BAL(k−1) + der;

der = V/60*BAL(k)/(K_m + BAL(k));

end

plot([1:length(BAL)]/60,BAL)

title('Blood Alcohol Level after ingesting 2 cl alcohol ...

(about one pint of beer) in 20 minutes','Fontsize',10)

ylabel('BAL [mg/dl]','Fontsize',10)

xlabel('time [h]','Fontsize',10)
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Solutions to chapter 1. Biochemical Reactions
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Figure 1.4 Blood alcohol content according to the simulation example.

Running the code generates the plot in Fig. 1.4.

Another possibility is to use MATLABs built in solvers for odrinary

differential equations, such as ode45. The MATLAB-script would

then look something like

% BAL simulation

V = −15;% mg/(l*h)

K_m = 5;% mg/dl

VD = 10*(20 + 0.36*80−0.1*25); % dl

% The 'initial value' of the concentration [A] is actually

% the concentration in t = 20 min when the metabolization

% of the alcohol starts.

initial_value_A = 0.02*1000*0.8*1000/VD; % mg/dl

% Define the differential equation y(t) = [A](t)

dAdt = @(t,y) V/60*y/(K_m+y);

% Solve the differential equation

[t, Y] = ode45(dAdt, [0 220], initial_value_A);

t = (t+20)/60; % Shifting the time vector 20 min, and changing into

% hours instead of minutes.

Y = [zeros(size(0:0.1:(t(1)−0.01))) Y']; % Adding zeros to the

% value−vector for time 0−20 min.

t = [0:0.1:(t(1)−0.01) t']; % Adding the time between 0−20 minutes

% to the time vector.

plot(t,Y)

title('Blood Alcohol Level after ingesting 2 cl alcohol ...

(about one pint of beer) in 20 minutes','Fontsize',10)

ylabel('BAL [mg/dl]','Fontsize',10)

xlabel('time [h]','Fontsize',10)
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