
FRTF01 L8—Electrophysiology

Lecture

Electrophysiology in general
Recap: Linear Time Invariant systems (LTI)

Examples of 1 and 2-dimensional systems
Stability analysis

The need for non-linear description of systems
Analysis of stability of nonlinear systems and nonlinear
phenomena.
Examples in Electrophysiology:

the Van der Pol heartbeat-model
the Hodgkin and Huxley model of the action potential

Summary
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Definition of Electrophysiology

Merriam Webster’s definition of Electrophysiology:

Physiology that is concerned with the electrical aspects of
physiological phenomena.
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Systems with Electrical Properties

Can you give an example of a physiological system with
electrical properties?

The heart (cardiac cells), muscle cells, neurons, endocrine cells
(releasing hormones due to electrical stimuli).

c©Carolina Lidström: FRTF01 L8—Electrophysiology



What is electricity?

Atom: protons (+), neutrons and
electrons (-).
Ions: charges are out of balance, either
negatively or positively charged.
Flow of electrons, or a negative charge,
is electricity.

p+n
e−

Example: The flow of ions over the cell membrane give rise to
an electric potential.
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Electricity in the body

For what purpose is electricity used in the body?

To send information from point A to point B

Why aren’t we sending information with diffusing chemicals
instead?

Speed. With electricity, nearly instantaneous response to
control messages
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How do we send information with
electricity?

The natural resting potential of the cell membrane is
negative due to imbalance between ions
The cell is capable of depolarizing its membrane and
creating an action potential (either through external
stimuli or by itself)
The electrical information is "jumping" from one cell to
another until it reaches its destination

Note: only excitable cells are able to create action potentials. In
the majority of cells the membrane potential stays relatively
constant over time.
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Reminder: Membrane potential

The membrane is selectively
permeable to different ions

Non-uniform distribution of
ions across membrane

→ Resting potential is
negative

Membrane potential
measured as the difference in
potential inside and outside
the cell

Ref: Purves et al., Neuroscience p. 76, 2004
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Reminder: Action potential

Voltage-gated ion
channels can describe
the change in
permeability of
different ions
Permeability
dependent on
membrane potential
and time Ref: Purves et al., Neuroscience p. 39, 2004

More on this later...
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Reminder: Muscle contraction

Action potential travels along motor neuron and
terminates on a muscle fiber.
Acetylcholine, ACh, is released into the synaptic cleft (the
space separating the axon terminal and the motor end
plate) and changes the permeability of the cells of the
muscle fiber.
An action potential is created and propagates across the
surface of the sarcolemma. ACh is removed from synaptic
cleft so the effect is brief.
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Examples of non-linear systems and
phenomena

Nonlinear systems:

The electrical potential during a heartbeat
The action potential of a neuron

Nonlinear phenomena:

Hysteresis
Limit cycles
Chaos
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Recap: 1D Linear time invariant system

LTI: differential equation can be written as a linear combination
of the variable and its derivatives. Time-invariant parameters.

Example: Homogeneous differential equation (right-hand side
only contains terms involving the unknown variable x)

dx
dt = −

1
k ⋅ x

With some initial condition x(0). Rate coefficient 1/k (k is a
constant).

Solution: x(t) = x(0) ⋅ e−t/k

Physiological relevance: Describes a process of growth or
decay, e.g enzyme reaction.
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Recap: 1D Linear time invariant system

Example: Inhomogeneous differential equation (right-hand side
contains additional term which is independent of x)

dx
dt =

1
k (−x + u(t))

With some initial condition x(0) and input u(t). Rate coefficient
1/k (k is a constant).

Solution: x(t) = x(0) ⋅ e−t/k + 1
k
∫ t

0 e−(t−τ )/ku(τ )dτ .

Physiological relevance: Could describe the spike rate x(t) in a
neuron when stimulated by a time-varying stimuli u(t) (current).
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Recap: 1D LTI - Stability analysis

State space representation

ẋ = −1
kx +

1
ku

What are the eigenvalues of this system if k > 0? If k < 0?
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Example in MATLAB

% Parameter
k = 2;

% Input function
u = @(t) 5;

% Differential Equation
dxdt = @(t,x) 1/k∗(−x+u(t));

% Solution
init_value = 0;
[t X] = ode45(dxdt,[0 10],init_value);
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Example in MATLAB
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2D LTI system

Stability analysis of the equilibrium point:

Trajectory: the entire time course of the solution of the
differential equation from t = 0 to t = ∞.

Stability of equilibrium point:

Asymptotically stable: all trajectories starting within a
region containing the equilibrium point decays to that point
exponentially as t→∞.
Unstable: at least one trajectory in the region leaves that
region permanently.
Stable/Neutrally stable: if nearby trajectories remain
nearby as t→∞ but do not approach asymptotically.
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Example in MATLAB: Spiral

(
ẋ1
ẋ2

)
=

(
−2 −16
4 −2

)(
x1
x2

)
Eigenvalues of the system:
−2+ 8i, −2− 8i
(complex conjugate pair)

% Differential Equation
dxdt = @(t,x) [−2 −16; 4 −2]∗x;

% Solution
init_value = [0.3 0.3];
[t X] = ode45(dxdt,[0 10],init_value);
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Phase plot and trajectory starting in [0.3 0.3]

Stability possibilities for spiral: Asymptotically stable or
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Example in MATLAB: Node

(
ẋ1
ẋ2

)
=

(
−2 4
0 −3

)(
x1
x2

)
Eigenvalues of the system: −2,
−3

% Differential Equation
dxdt = @(t,x) [−2 4; 0 −3]∗x;

% Solution
init_value = [0.4 0.4];
[t X] = ode45(dxdt,[0 3],init_value);
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Phase plot and trajectory starting in [0.4 0.4]

Stability possibilities for node: Asymptotically stable or unstable.
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Example in MATLAB: Saddle Point

(
ẋ1
ẋ2

)
=

(
2 −1
0 −3

)(
x1
x2

)
Eigenvalues of the system: 2,
−3

% Differential Equation
dxdt = @(t,x) [2 −1; 0 −3]∗x;

% Solution
init_value = [0.3 0.3];
[t X] = ode45(dxdt,[0 5],init_value);
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Phase plot and four trajectories

Stability possibilities for saddle point: Unstable.
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Example in MATLAB: Center

(
ẋ1
ẋ2

)
=

(
1 −2
5 −1

)(
x1
x2

)
Eigenvalues of the system: 3i,
−3i

% Differential Equation
dxdt = @(t,x) [1 −2; 5 −1]∗x;

% Solution
init_value = [0.3 0.3];
[t X] = ode45(dxdt,[0 10],init_value);
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Phase plot and trajectory starting in [0.3 0.3]

Stability possibilities for center: Stable/Neutrally stable.
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Linearization and non-linear behavior

Approximate non-linear system around an equilibrium point
by Taylor series expansion
Good tool when analyzing behavior around equilibrium
points
Does not captivate nonlinear behavior as limit cycles,
hysteresis and chaos [think back to HW1!].

Now to some examples of nonlinear systems in
electrophysiology!
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Electrophysiology of the Heart
The Heartbeat

Two types of cardiac cells: contractile cells (99%) and
specialized non-contractile muscle cells, pacemaker cells.
Pacemaker cells controls and coordinates the activities of
the contractile cells, without neural stimulation;
automaticity.
Cellular connections enables rapid passage of action
potentials from cell to cell.
Pacemaker cells sets the pace at which the heart beats.
Contraction as in skeletal muscle cells described before.
Contraction of individual cardiac cells (first in atria then in
the ventricles).
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Refractory period

Ref: Martini and Bartholomew, Essentials of Anatomy and Physiology p.414, 2004.
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The Heartbeat Model

Van der Pol equation (1929), mathematical model of the
heartbeat:

d2x
dt2 −ν(1− x2)

dx
dt + x = 0

ν is a positive constant
describes nonlinear damping

Analysis of diff. eq:

Negative damping when pxp is small
Positive damping when pxp is large
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Analysis of the heartbeat model

Use
y= ν ⋅

(
x − x3/3

)
− ẋ to

rewrite the system as
follows:

ẋ = ν

(
x − x

3

3

)
− y

ẏ= x
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Initial value: [0 0.1]

Initial value: [2 3]
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Analysis of the heartbeat model

When ν is large use y= x − x3/3− ẋ/ν to rewrite the system
as follows:

ẋ = ν

(
x − x

3

3 − y
)

ẏ= x
ν
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Initial value: [0.5 0]

Initial value: [1 1]
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Analysis of the heartbeat model

ν is large: Hysteresis loop.
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Hysteresis: For two variables x and y, such that cyclic variations in x results in cyclic variations in y, then if the
changes of y lags behind those of x, we may say that there is hysteresis in the relation of x and y.
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Analysis of the heartbeat model

If adding an input signal u(t) = Asin(wt), the differential equation
looks as follows:

d2x
dt2 −ν(1− x2)

dx
dt + x − Asin(wt) = 0
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Chaos: systems which are predictable in principle but yet seem to behave in an unpredictable fashion.
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The Neuron

Soma, dendrites, axon, synapse.
Electrophysical recording
intracellularly with microelectrode →
detect action potential
Microelectrode: instrument to
measure electric potential (by
oscilloscope)
Single cell recording - receptive field
of a neuron

Ref: Purves et al, Neuroscience p.33, 2004
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The Neuron

Input: stimuli (heat, light),
synaptic contact.
Every nerve cell gets 1-1000
synapses from other nerve
cells - integrate information.
Inhibitory or excitatory
neurons
Action potential is an all or
none phenomenon

Ref: Purves et al, Neuroscience p.33, 2004

The nervous system is highly complex and highly nonlinear.

Example: Threshold for producing spikes; weak stimulation has no
effect yet several weak stimuli together produce a dramatic spike
response.
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How to model a neuron

Some examples of neuronal models are:

Device which is either on (1) or off (0).
Spike rate: varies continuously between 0 (postsynaptic
potential is below threshold) and some maximum saturated
level (1000 Hz) due to the refractory period.
Hodgkin and Huxley (1952) described the generation
and shape of an individual action potential as a
function of the underlying ionic currents.
Even more detailed models that incorporate the geometry
and spatial distribution of the neurons.
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Ionic movement produce electric
potential

Active transporters: moves ions against their concentration
gradient

Selective permeability (ion channels) allows only certain ions
to cross the membrane.

Working against each other, creating the resting potential.

Ref: Purves et al., Neuroscience p. 76, 2004
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Ionic movement produce elctrical signals

Electrochemical equilibrium:

1. Concentration gradient that causes K+ to move to compartment 2.

2. Opposing electrical gradient impedes further flow of K+.

Ref: Purves et al., Neuroscience p. 35, 2004

c©Carolina Lidström: FRTF01 L8—Electrophysiology



The Nernst Equation

The Equilibrium potential for some ion is given by:

E = RT
zF ln

(
Cout
Cin

)

z - valence charge

Cout - the ion concentration outside (2) the cell

Cin - the ion concentration inside (1) the cell

R - thermodynamic gas constant

F - Faraday constant

T - temperature in Kelvin.
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The Goldman Equation

The membrane potential when more than one permeant ion
exist:

V = RT
F ln

(
PK [K ]2 + PNa[Na]2 + PCl[Cl]2
PK [K ]1 + PNa[Na]1 + PCl[Cl]1

)
Pi - permeability for ion [i], seems time and voltage dependent.

Ref: Purves et al., Neuroscience p. 39, 2004
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Permeabilities

Expermiments on squid axon (large) → initial insights on
membrane electrochemical behavior

Resting membrane more permeable to K+

Action potential: Increased permeability to Na+, then K+

permeability increases (more than at rest), creates
hyperpolarization.

Ref: Purves et al., Neuroscience p. 39, 2004
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The Voltage Clamp method

Hodgkin and Huxley used the voltage clamp technique, invented by
Kenneth Cole in the 1940’s, to understand how the permeabilities
depend on the membrane potential and time.

Ref: Purves et al, Neuroscience p.48, 2004.

The measured current is the flow of ions across the membrane.
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The Voltage Clamp method

Ref: Purves et al, Neuroscience p.49, 2004.
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Mathematical model of Ion Channels

Ion channels are governed by Ohm’s law which states that

I = UR

Or with the conductance �̃ = 1/R [nS] and the equilibrium
potential E [mV]:

I = �̃ ⋅ (V − E)

where V [mV] is the membrane potential. I is the ionic current
over the nerve cell membrane for a specific ion with equilibrium
potential E.
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Determine the conductance

E determined through Nernst eq.

Voltage clamp experiment to get I at different V (separate ions)

Ref: Purves et al, Neuroscience p.55, 2004.
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The Hodgkin and Huxley Model

A.L. Hodgkin and A.F. Huxley,
A Quantitative Description of Membrane Current and its Application to
Conduction and Excitation in Nerve in Journal of Physiology, 1952.
Nobel Prize in Physiology or Medicine in 1963.

Cm
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+

+ +
− − −
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The Hodgkin and Huxley Model

a
2R2θ 2

d2V
dt2 = Cm

dV
dt + INa + IK + IL

where

I = a
2R2θ 2

d2V
dt2

is the membrane current density, a is the radius of the fibre and
R2 the specific resistance of the axoplasm. Can be written as;
I = Iext, some external current input.
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The Hodgkin and Huxley Model

Remember I = �̃(V − E). In Hodgkin and Huxley

INa = �Nam3h (V − ENa)
IK = �Kn4 (V − EK )
IL = �L (V − EL)

where m, h and n are functions of the membrane voltage V
and the time t.
The ion [L] stands for the leakage, covering the behavior of all
other ions except [Na] and [K].
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The Hodgkin and Huxley Model

Cm
dV
dt = −INa − IK − IL + Iext

INa = �Nam3h (V − ENa)
IK = �Kn4 (V − EK )
IL = �L (V − EL)

with parameters

Cm = 1[µF/cm2]

ENa = 45[mV] �Na = 120[mS/cm2]

EK = −82[mV] �K = 36[mS/cm2]

EL = −59.387[mV] �L = 0.3[mS/cm2]
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The Hodgkin and Huxley Model

The dynamics of the gating variables are:

dm
dt = αm (V ) (1−m) − βm (V )m

dh
dt = α h (V ) (1− h) − β h (V ) h

dn
dt = α n (V ) (1− n) − β n (V ) n

where the rate functions are, unit [1/ms]:

αm (V ) = 0.1 (V + 45) / (1− exp (− (V + 45) /10))
βm (V ) = 4exp (− (V + 70) /18)
α h (V ) = 0.07exp (− (V + 70) /20)
β h (V ) = 1/ (1+ exp (− (V + 40) /10))
α n (V ) = 0.01 (V + 60) / (1− exp (− (V + 60) /10))
β n (V ) = 0.125exp (− (V + 70) /80)
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The Hodgkin and Huxley Model

m(t) - Na+ activation h(t) - Na+ de-activation n(t) - K+ activation
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The Hodgkin and Huxley Model
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The Hodgkin and Huxley Model

Pro: Detailed model of the action potential [HW4!]
Con: Computationally demanding to model several
neurons (network of neurons).
Exists several other models of the neuron, better when
simulating networks.
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Networks of Neurons

Ref: Purves et al, Neuroscience p.94, 2004

Feedback loop in
2-neuron network:

E

I
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Summary

LTI vs non-linear systems
Important to keep non-linear behavior in analysis
HH-model for action potential

Current research:

Electrophysiological studies of interneurons
Memory
Large models to describe disease

Project: neurodynamics?
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