
Home Assignment 1: Enzyme Dynamics

2017

Preparation: exercises in Chapters 1-2 of the exercise manual.

In the human cell, glycolysis is the first step of three in the fundamental glucose
metabolic pathway. The glycolysis itself consists of ten different steps where glucose
is converted to pyruvate, which is the input to the citric acid cycle (also known as
Krebs cycle). In this assignment, we will study the dynamics of the third step of the
glycolysis. It is considered to be the most rate-limiting step of the process but also
an important source to possible oscillations in ATP (Adenosine triphosphate) and
ADP (Adenosine diphosphate).

The third step of the glycolysis includes phosphorylation of fructose 6-phosphate
to fructose 1,6-bisphosphate as well as hydrolysis of ATP to ADP, catalyzed by the
enzyme phosphofructokinase, PFK1. In the active state, PFK1 catalyzes the pro-
duction of ADP from ATP as fructose 6-phosphate is phosphorylated. A simplified
model of the enzyme reactions is given by the following stoichiometry where PFK1
is denoted by E, ATP is denoted by S1 and ADP is denoted by S2.

γS2 + E
k3−−⇀↽−−
k−3

C1 (1)

−⇀
v1

S1 (2)

S1 + C1
k1−−⇀↽−−
k−1

C2 (3)

C2
k2−⇀ C1 + S2 (4)

S2 −⇀
v2

(5)

In (1), the enzyme PFK1 (E) is activated or deactivated by binding or unbinding
with γ number of molecules of ADP (S2). Complex C1 is the active form of PFK1.
Constants k3 > 0 and k−3 > 0 denote the rate of the reaction in either direction.
Similar denotation is used in the remaining reactions. In (3), ATP (S1) can bind
with the activated form of the enzyme (C1) to produce a complex C2. Complex C2

can then produce complex C1 and ADP (S2), as given by (4). Furthermore, there
is a constant supply rate of ATP (S1) given by (2) while ADP (S2) is removed at a
rate proportional to its concentration in (5).

We will now analyze the dynamics of the enzyme reactions by the methods
treated in Lectures 2-3 (Chapters 1-2 of the exercise manual). The analysis is divided
into the following steps:
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1. Consider the notation s1 = [S1], s2 = [S2], e = [E], x1 = [C1] and x2 = [C2].
The system of differential equations describing the overall dynamics of the
substrates, enzyme and complex products in reactions (1)-(5), using the law
of mass action, is given by

ds1
dt

= v1 − k1s1x1 + k−1x2 (6)

ds2
dt

= −v2s2 + k2x2 + γk−3x1 − γk3esγ2 (7)

dx1
dt

= k3es
γ
2 − (k1s1 + k−3)x1 + (k2 + k−1)x2 (8)

dx2
dt

= k1s1x1 − (k−1 + k2)x2 (9)

de

dt
= −k3esγ2 + k−3x1. (10)

Given the differential equations of the complexes and the enzyme, i.e., equa-
tions (8-10) above, verify that

de

dt
+
dx1
dt

+
dx2
dt

= 0.

If e(0) = e0 > 0 while x1(0) = x2(0) = 0, what can be said about the sum
e(t) + x1(t) + x2(t) based on the observation above? Interpretation?

2. Now, you will simulate the behavior of the system for a given initial state.
However, we will first rewrite and simplify the model further as our main in-
terest is the dynamics of the substrates, ATP and ADP. Using the observation
in the previous step, we can exclude equation (10) from our analysis by re-
placing e with e0 − x1 − x2 in the remaining equations, i.e., equations (6-9).
Furthermore, we can introduce the dimensionless concentrations

σ1 =
k1

k2 + k−1
s1,

σ2 =

(
k3
k−3

) 1
γ

s2,

ξ1 =
x1
e0
,

ξ2 =
x2
e0
,

and the new time scale

τ =
e0k1k2
k2 + k−1

t.

Moreover, we will apply steady-state assumptions for the dimensionless com-
plex products ξ1 and ξ2 (i.e., dξi/dt = 0) to derive the dimensionless substrate
differential equations

dσ1
dτ

= ν − f(σ1, σ2), (11)

dσ2
dτ

= αf(σ1, σ2)− ησ2, (12)
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where

f(σ1, σ2) =
σ1σ

γ
2

σγ2σ1 + σγ2 + 1
, (13)

ν = v1/k2e0, α = (k2 + k−1)/k1(k3/k−3)
−1/γ and η = v2(k2 + k−1)/k1k2e0.

Given parameter-values ν = 0.0285, α = 1.0, η = 0.1 and γ = 2 and initial
values of (σ1, σ2)τ=0 = (0.3, 0.3), simulate the system in Matlab for 1000 time
steps by filling in the missing code in the file enzymeskeleton.m provided on
the course home page. Use the function handle @(t,x)f(t,x) as well as
the ode45 command. Produce the plots in Fig. 1 by running the script. The
dynamics is clearly oscillatory. Glycolytic oscillations have been observed in
vitro in human cell extracts and in yeast cells, and is hypothesized to play a
key role in, e.g., pulsatile pancreatic insulin secretion. Explain what happens
with the concentrations as time progress.

3. Set the initial values to (σ1, σ2)τ=0 = 3 ·(0.3, 0.3). Describe what happens with
the concentrations as time progress. Compare to the simulation made in Step
2.

4. The system in Eq. 11 - 12 is nonlinear as can be seen in Eq. 13. Consider the
linear system

ẋ =

[−1 0.5

−3 0.5

]
x.

Simulate the system for t ∈ (0, 25) and initial values x0 = (0.3, 0.3) and x0 =
3 · (0.3, 0.3). Plot x1 and x2 as a function of time. How does the behavior of
the linear system change when the initial value is changed? Compare with the
non linear system studied previously.
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Figure 1 Simulation plots of the normalized ATP and ADP dynamics.
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