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0. Repetition of Linear Algebra, Differential

equations and MATLAB

Solve the following exercises by hand. If you are unsure about how to
solve the exercises, please go back to your Linear algebra and Analysis
books and review the material needed.

0.1

a. Find the solution to the differential equation below when x(0) = 1,

dx

dt
= c

b. Find the solution to the differential equation below when x(0) = 1,

dx

dt
= cx

c. Find the solution to the differential equation below when x(0) = 1 and
x 6= 0 for any t,

dx

dt
= 2tx2

d. Rewrite the differential equation into a system of first order differential
equations. Discuss some possible dynamics in a physiological system
the model could describe.

ÿ + 7ẏ − 3y = 0

y(0) = 0

ẏ(0) = 1

0.2 Given the following matrix

A =

(

a b

c d

)

determine

a. the determinant of A,

b. the inverse of A

c. the eigenvalues of A.

0.3 Approximate the following functions with first order Taylor series ex-
pansion around the specified point.
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Chapter 0. Repetition of Linear Algebra, Differential equations and MATLAB

a. f(x) = (x − 2)2 − 9 at x = 5. Plot f(x) as well as the Taylor series
expansion around x = 5. Can you describe how f(x) is approximated?

b. f(x1, x2, u) = x21x2 +
√
2 sin(u) at (x01, x

0
2, u

0) = (−1,−1, π/4).

Solve the following exercises using MATLAB. These exercises are in-
spired by or fully extracted from EDA017: Föreläsningsanteckningar,
OCTAVE/MATLAB by Christian Söderberg.

0.4 In MATLAB, find the commands necessary to derive the following results
for matrices A and B

A =





2 0 0

0 3 4

0 4 9



 , B =





1

2

3





a. Calculate A · B and BT ·A. What about B ·A?
b. Give the eigenvalues and eigenvectors of A.

c. Give the transpose and the determinant of A.

d. Give the inverse of A and review how the inverse is derived by hand
for a 2-by-2 matrix.

0.5

a. Plot y(x) = e−x/2cos(2πx) when −6 ≤ x ≤ 3 by using the function
handle to create an anonymous function. Give your plot a title as well
as labels on the axes. Useful commands: fplot, xlabel, ylabel,
title.

b. Modify your code such that you only show values −4.5 ≤ x ≤ −1 and
−10 ≤ y ≤ 10. Useful command: axis.

c. Integrate the function for −4.5 ≤ x ≤ −1.
Useful commands: integral, quad.

d. Find the solution to f(x) = 0 when f(x) = x3 + 2x − 1. Comment on
the answer. Useful command: fsolve.

0.6 Write a function which for every matrix A gives you the sum of the
diagonal elements of that matrix. Useful commands: diag, sum and
size.

0.7 Solve the differential equation

ÿ + 7ẏ − 3y = 0

y(0) = 0

ẏ(0) = 1

in the interval 0 ≤ t ≤ 5 by using MATLABs solver ode45.
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Chapter 0. Repetition of Linear Algebra, Differential equations and MATLAB

Solve the following exercises using SIMULINK in MATLAB. These ex-
ercises are taken from Exercises in MATLAB/Simulink, Signals and
Systems by Thomas Munther.

0.8 Investigate the bacterial growth in a jam pot. Assume that the number
of born bacteria is increasing proportional to the existing number of
bacteria x and the number dying is proportional to the existing number
in square. This gives the following differential equation

dx

dt
= bx− px2

where b = 1 [1/hour] is the birth rate constant and
p = 0.5 [1/(bacteria·hour)] is the death rate constant.
Assume x(0) = 100 [bacteria]. Use SIMULINK to show what the solu-
tion to the differential equation looks like.

0.9 Some physiological systems are better described in discrete time which
gives rise to difference equations. Show the behavior of y in the two
following difference equations

a.

yt = −0.5 · yt−1 + xt

b.

yt = 0.5 · yt−1 + xt

where x is the input signal to the system, in shape of a step starting
in t = 0 with amplitude 1 and y−1 = 1. yt is the value of y in time step
t.

0.10 Get familiar with some of the blocks that will be used in the course;
From Workspace, To Workspace, Constant, Scope, Step and
Sine Wave. Look at how Step and Sine Wave can be altered and
how they look by the use of a Scope. Try to save the result to the
workspace by To Workspace and plot it. Save the plots as an .eps-
file. Create a document, write something nice about the plot, add the
plot with a figure text, save the document as a .pdf-file.
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1. Biochemical Reactions

1.1 Use the law of mass action to derive the differential equations governing
the dynamics of X, Y and Z in the following reactions. Also, draw a
compartmental representation of the reactions.

a.

X
k1−−⇀↽−−
k−1

Y

b.

X +X
k1−−⇀↽−−
k−1

Y

c.

3X + Y
k1−−⇀↽−−
k−1

Z

1.2 Simulate and plot the concentrations for the substrate S, enzyme E,
substrate-enzyme complex C and the end product P for the basic en-
zymatic reaction

S +E
k1−−⇀↽−−
k−1

C
k2−⇀ P + E

using the following set of parameters; k1 = 0.1, k−1 = 0.01 and k2 =
0.02, and with the following initial conditions [S]0 = 0.15 [mmol/l],
[E]0 = 0.01 [mmol/l], [C]0 = 0 [mmol/l] and [P ]0 = 0 [mmol/l]. What
happens if the initial concentration of the enzyme is doubled? What
happens if the initial concentration of the substrate is doubled? How
does these results correspond to the Michealis-Menten parameters?

1.3 The data in Table 1.1 describes the concentration and reaction rates of
a chemical process.

a. Plot the velocity versus the Concentration. Is it an enzymatic reaction
following the Michaelis-Menten relationship? Can you give some rough
estimates of Vmax and Km from this graph?

b. Plot the inverse of the velocity versus the inverse of the concentration.
This plot is commonly referred to as a Lineweaver-Burk plot. Can you
give some rough estimates of Vmax and Km from this graph as well?

1.4 Competitive Inhibition: Some enzymes may bind other substances than
the target substrate to the binding site, thereby inhibiting the for-
mation of the intended substrate-enzyme complex and the subsequent
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Chapter 1. Biochemical Reactions

Table 1.1 Reaction Data for problem 3

Substrate Reaction

Concentration [mM] Velocity [mM/s]

0.1 0.04

0.2 0.08

0.5 0.17

1.0 0.24

2.0 0.32

3.5 0.39

5.0 0.42

end-product. Such a situation is characterized by the following reaction
dynamics:

S + E
k1−−⇀↽−−
k−1

C1
k2−⇀ P + E

I + E
k3−−⇀↽−−
k−3

C2

Derive the following relationship for the reaction velocity of the prod-
uct reaction, considering steady-state conditions for the enzyme and
enzyme complexes and preservation of the total enzyme content:

V =
Vmax[S]

[S] +Km(1 + [I]/KI)

where [I] is the concentration of the inhibitor, Km = (k−1+k2)/k1 and
KI = k−3/k3.

1.5 Alcohol metabolism: Clearance of the blood alcohol level (BAL) [A]
[mg/dl] from the liver is metabolized by more than 20 different enzymes.
From experimental data the total clearance effect of these enzymes
has been lumped into a common Michaelis-Menten relationship with
population average Vmax = −15[mg/(dl·h)] and a Km = 5 [mg/dl].

d[A]

dt
=

Vmax[A]

Km + [A]

To calculate the BAL, the total distribution volume of the body for
alcohol has to be known. The following relationship between the total
water volume, representing this distribution volume VD [dl], and the
weight mBW [kg], gender and age Y [years] of the person has been
suggested.

VD = 10 (20 + 0.36mBW − 0.1Y ) , Men

VD = 10 (14 + 0.25mBW ) , Women

Assuming that a 25 year old man of 80 kg consumes a drink containing
2 cl of alcohol (density 800 kg/m3) at a fasting state. Digestion of
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Chapter 1. Biochemical Reactions

alcohol is very rapid on an empty stomach, and you may assume that
the total alcohol content has reached the blood stream after 20 minutes
whereafter metabolization is considered to start. Simulate and plot the
BAL level for the four hours following the drink.

1.6 Compartmental models can be used to study the main characteristics
of epidemics. In the so called SIR-model, the population is divided into
three compartments:

S(t) - number of susceptible people

I(t) - number of infected people

R(t) - number of recovered people.

The direction of the flow between the compartments is given by S →
I → R. The rate between compartments S and I is βI, where β > 0
is a constant. That is, a susceptible individual becomes infected with
a rate that is proportional to the number of infected individuals in
the population. The rate between compartments I and R is a constant
γ > 0.

a. Write down the balance equations for the SIR-model.

b. Can you say something about the sum of susceptible, infected and
recovered people?
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2. Model Building and Linearization

2.1 Given the compartment model below

y

x1 x2u
k k

assume that x1 and x2 represent quantities of a substance subject to
conservation. y is a measurement of x2. Morover, k is a rate-coefficient
describing linear reactions.

a. Give the balance equations. What are the states, the input and the
output of the system?

b. From the balance equations derive a state space representation for the
system.

c. Given k = 1, determine the transfer function of the system analytically
and by using functions from the control toolbox in MATLAB.

2.2 Give the state-space representation of the system

...
y + 3ÿ + 2ẏ + y = u

where u(t) and y(t) are the input and output, respectively. Choose
states x1 = y, x2 = ẏ and x3 = ÿ.

2.3 A process with output y(t) and input u(t) is described by the differential
equation

ÿ +
√
y + yẏ = u2

a. Introduce states x1 = y, x2 = ẏ and give the state space representation
of the system.

b. Find all stationary points (x01, x
0
2, u

0) of the system.

c. Linearize the system around the stationary point corresponding to u0 =
1.

2.4 Linearize the system

ẋ1 = x21x2 +
√
2 sinu ( = f1(x1, x2, u))

ẋ2 = x1x
2
2 +

√
2 cos u ( = f2(x1, x2, u))

y = arctan
x2
x1

+ 2u2 ( = g(x1, x2, u))

around the stationary point u0 = π/4.
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Chapter 2. Model Building and Linearization

2.5 Blood Doping: Everyday about 2.5 · 1011 (0.25 trillion) new red blood
cells (RBCs) are released from the bone marrow into the peripheral
circulation, and in steady-state the same number of depleted RCB:s
are cleared by the spleen. Assume that the average lifespan of a RCB
is 120 days, and the cleared amount between two days k and k+1 is a
constant fraction f of the total cell population R(k) at day k. The cell
population R(k) is Rref [trillion cells] at steady state. Furthermore, the
rate of production r(k+1) [trillion cells/day] is controlled by the level of
erythropoietin EPO u(k) [Units/ml] according to the outlined dynamics
below (changes in the EPO level do not fully effect the production rate
directly, but the production rate r(k + 1) is partly dependent on the
production rate the previous day r(k)):

r(k + 1) = 0.9 · r(k) + u(k), r(0) = f · Rref , u(0) = 0.025 (2.1)

Set up the difference equations for the red blood cell population R(k)
and the production rate r(k). Assume that we are at steady state with
a total cell population Rref of 120 ·0.25 trillion cells. Create a Simulink
model according to Fig. 2.1 and simulate the system for 100 days.
Assume that the level of EPO normally is constant at 0.025 Units/ml,
but that it is artificially elevated to the double normal level by injections
for 20 consecutive days between day 21 and 40.

Production Rate

Population
From

Workspace

epo

EPO

Discrete State−Space

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

Figure 2.1 Simulink model for the red blood cell system

2.6 Infection; Bacteria-Leukocytes Predator-Prey System: Neuthrophiles
are specialised white blood cells (leukocytes), specialising in defending
against bacterial infections. Let B(t) denote the number of bacteria in
a wound and N(t) the number of neuthrophiles. The bacterial growth
factor is α [bacteria/hour] and the killing factor of the neuthrophiles β
[bacteria/hour] and assume that the entry rate of new neuthrophiles is
u(t) [neutrophiles/hour].

dB

dt
= αB(t)− β · B(t) ·N(t) (2.2)

dN

dt
= −γN(t) + u(t) (2.3)

Simulate the system in Simulink with α = 3, β = 1.1, γ = 1.5, and with
initial conditions B(0) = 100, N(0) = 0 and let u(t) be a step with
magnitude 10. What happens if α becomes large (> 8)?

2.7 Derive the formula G(s) = C(sI −A)−1B +D for a general system

ẋ = Ax+Bu

y = Cx+Du.
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3. Control in Physiology 1

3.1 Determine the transfer functions and give differential equations, de-
scribing the relation between input and output for the following sys-
tems, respectively.

a.

ẋ =









−2 0

0 −3







x+









5

2







u

y =


−1 1


x+ 2u

b.

ẋ =









−7 2

−15 4








x+









3

8








u

y =


−2 1


x

3.2 Determine the impulse and step responses of the systems in assign-
ment 3.1 both analytically and through MATLAB. The step response is
defined as the output of the system when the input is the step function
u(t) = 1 for t > 0 and u(t) = 0 for t < 0.

3.3 Consider the system

G(s) =
1

s2 + 4s + 3

a. Calculate the poles and zeros of the system. Is the system stable?

b. Calculate the impulse response by hand and plot it in MATLAB.

c. Calculate the step response by hand and plot it in MATLAB

3.4

a. Consider the linear time invariant system

dx

dt
=









−1 0

0 −2







x+









1

0







u

y = x

Is the system asymptotically stable? Plot the step response of the sys-
tem.

b. Consider the linear time invariant system

dx

dt
=









1 0

0 2








x+









1

0








u

y = x

Is the system stable? Plot the step response of the system.
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Chapter 3. Control in Physiology 1

c. Consider the linear time invariant system

dx

dt
=









0 −1

1 0








x+









1

0








u

y = x

Is the system stable? Plot the step response of the system.

3.5 Determine the transfer function from U to Y for the systems below.

a.

U + G1 Y

G2

b.

H1

U G1 + G2 Y

H2

c.

G3 +

U + G1 G2 Y

3.6 Assume that the system

G(s) =
0.01(1 + 10s)

(1 + s)(1 + 0.1s)

is subject to the input u(t) = sin 3t, −∞ < t < ∞

a. Determine the output y(t).

b. The Bode plot of the system is shown in figure 3.1. Determine the
output y(t) by using the Bode plot instead.
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Chapter 3. Control in Physiology 1
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Figure 3.1 The Bode plot in assignment 3.6.
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4. Control in Physiology 2

4.1 Assume that the amount of some substrate y inside a cell is described
by the differential equation

ẏ(t) + 0.01y(t) = 0.01u(t)

where u is the inflow of the substrate to the cell.

a. Let u be the input and y the output and determine the transfer function
GP (s) of the process.

b. This is to be controlled by negative feedback with a controller GR(s).
Draw the block diagram and write down the transfer function of the
closed loop system. Be sure to define the input u, output y, error e and
reference signal r in the block diagram of the closed loop system.

c. If GR(s) is a P controller what will the transfer function look like then?

d. Choose K, given that GR(s) = K, such that the closed loop system
obtains the characteristic polynomial

s+ 0.1

4.2 A process is controlled by a P controller according to the figure below.

ΣΣ
r

n

u y
GR GP

−1

a. Measurements of the process output indicate a disturbance n. Calculate
the transfer functions from n to y (the sensitivity function).

b. Let GP (s) = 1/(s+1) and GR(s) = K and assume that the disturbance
consists of a sinusoid n(t) = A sinωt. What will y become when this
disturbance is present?

c. Assume that K = 1 and A = 1 in the previous sub-assignment. Calcu-
late the amplitude of oscillation y for the cases ω = 0.1 and 10 rad/s,
respectively.

4.3 The process given by GP (s) = 1/(s+1)3 is controlled through negetive
feedback by the controller given by GR(s) = 6.5.

a. Determine the sensitivity function S(s).

b. The gain plot of the sensitivity function is given below. How much are
constant load disturbances damped by the control circuit (in closed
loop, as compared to open loop)? At which angular frequency does the

14



Chapter 4. Control in Physiology 2

control circuit exhibit the largest sensitivity towards disturbances and
by how much are disturbances amplified at most?

10
−1

10
0

10
1

10
−1

10
0

10
1

F
ör

st
är

kn
in

g

4.4 The open-loop transfer function of a system is given by:

Go(s) = GR(s)GP (s) =
K(s+ 10)(s + 11)

s(s+ 1)(s + 2)

For which values of K is the closed-loop system stable?

4.5 Flow control is important in many applications. In e.g. a hemodialysis
machine it is very important to keep a steady and constant flow through
the filters to achieve optimal filtration. Pump-to-flow dynamics is given
by the pump characterstics together with the piping and filter system
topology. The following transfer function relationship is assumed to
hold between the flow and the control input:

GP (s) =
e−9s

(1 + 20s)2

If a proportional controller is used, how large may the gain constant K
become before the system becomes unstable?
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5. Pharmacokinetics and Tracers

5.1 The half-life of a penicillin solution that contains 300 units/ml is 8
days, in plasma. What will the concentration in plasma be in 7 days?
Assume the drug is eliminated from plasma through a linear process.
Plot the concentration over time.

5.2 The half-life of another penicillin solution is 6 days. Assume it is elim-
inated from plasma as a linear process. How long will it take for the
concentration to drop to 40 % of the initial concentration?

5.3 Assume a drug is metabolised from plasma through a linear process.
It has an initial potency of 90 mg/ml. After 25 days in a cold room,
the concentration is found to be 80 mg/ml. What is the half-life of the
drug during the storage conditions?

5.4 A new drug targeting hepatatis has been developed. The drug is ad-
ministred orally and is believed to exhibit linear pharmacokinetics in-
cluding gut absorption.

a. Draw a simplified compartment model of the route of a drug including
the absoption in the gut, the distribution in the liver and the remaining
body and the elimination of the drug from these compartments. In the
model, the body compartment represents a lumped compartment for
the extra- and intracellular fluid of the body excluding the liver and
the gut.

b. Set up a state-space representation of the model with the drug con-
centration in the liver as output using the parameters found in Table
e.

c. Simulate a 500 mg dose, assuming it takes 5 minutes to dissolve at a
constant rate (100 mg/min), using lsim for a total duration of 168
hours.

d. Try adding more doses with a 24 hour interval, i.e., a new tablet every
24:th hour. The liver concentration will oscillate quite a lot with almost
a 2-fold ratio between the highest and the lowest concentrations. Could
you suggest some alternative dosing scheme to keep the concentration
at a more even level at the same mean concentration value?

e. How large should a constant intravenuous dose (here we assume that iv
injections enters the body compartment) be to achieve a steady-state
liver concentration of 112 mg/dl?
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Chapter 5. Pharmacokinetics and Tracers

Parameter Value Description

VG 0.1 Distribution volume Gut [l]

VB 42 Distribution volume Body [l]

VL 0.27 Distribution volume Liver [l]

kGB 0.1 Kinetic coefficient Gut-to-blood [min−1]

kBL 4·10−3 Kinetic coefficient blood-to-liver [min−1]

kLB 1·10−3 Kinetic coefficient liver-to-blood [min−1]

ke,G 0.02 Elimination constant, gut [min−1]

ke,B 3·10−6 Elimination constant, blood [min−1]

ke,L 8·10−6 Elimination constant, liver [min−1]
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6. Glucose and Insulin Dynamics

6.1 Insulin Sensitivity: The minimal model is used to estimate the insulin
sensitivity SI = ∂2Ġ/∂G∂I from an Intraveneus Glucose Tolerance
Test (IVGTT). The minimal model is:

dX(t)

dt
= −p2X(t) + p3(I(t)− Ib), X(0) = 0, I(0) = Ib

dG(t)

dt
= −(p1 +X(t))G(t) + p1Gb + UG(t)/VG, G(0) = Gb

• UG(t): Intravenous Glucose Injection.

• VG: Distribution volume for plasma glucose.

• X(t) represents ’remote insulin’.

According to the model developers, SI can be calculated as:

SI = −p3
p2

assuming steady state conditions of insulin. Derive this expression given
this assumption. Do you see any problems with this assumption con-
sidering the IVGTT experiment?

6.2 Minimal Model Simulation: Create a Simulink model of the minimal
model (diff. eqs. in previous exercise) and simulate it with 1-minute
interpolated (see e.g. interp1) plasma insulin data from Table 1, acting
as input, together with the glucose injection at time 0 min of 30 grams
of glucose into a distribution volume Vg of 5.45 l, to produce the glucose
response data. You may assume that we start in steady state conditions
with I = Ib = 7.3 and G = Gb = 85. The parameters are: p1 = 0.0308,
p2 = 0.0209 and p3 = 1.06 · 10−5.

6.3 Digestion Modeling: Consider the digestion model in the Padova sim-
ulation model:

qsto(t) = qsto1(t) + qsto2(t)

q̇sto1(t) = −kgri · qsto1(t) + C(t)

q̇sto2(t) = kgri · qsto1(t)− kempt · qsto2(t)
q̇gut(t) = −kabs · qgut(t) + kempt · qsto2(t)

Ra(t) =
f · kabs · qgut(t)

MBW

• C(t) is the amount of ingested carbohydrates.

• qsto1 is the solid stomach compartment, and qsto2 represents the
liquid phase.

• qgut is the glucose mass in the intestine.

• kgri the rate of grinding.
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Chapter 6. Glucose and Insulin Dynamics

Time [min] Plamsa Insulin

0 11

2 26

4 130

6 85

8 51

10 49

12 45

14 41

16 35

19 30

22 30

27 27

32 30

42 22

52 15

62 15

72 11

82 10

92 8

102 11

122 7

142 8

162 8

182 7

• kempt is the rate constant of gastric emptying.

• kabs is the rate constant of intestinal absorption.

• Ra(t) is the appearance rate of glucose in the blood.

The model parameters are different for different types of meals. Which
parameters would you expect to change between for example cooked
potatos and potato mash, and how would those values change?

6.4 Subcutaneous Delay: Show that the interstitial glucose value is a first-
order low-pass filtered version of the plasma glucose value considering
the kinetics according to Fig. 6.1, i.e., that the transfer function is of
the form G = K 1

1+sτ .
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Chapter 6. Glucose and Insulin Dynamics

k3

Gl

GISF

Gp
k1

k2

Uii

EGP

E
Renal Excetion

Uid
Insulin−dependent Utilization

Insulin−independent Utilization

Endogeneous Production

Rate of Appearance
Ra

k3

Figure 6.1 Interstitial and Plasma Glucose compartment kinetics.
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7. Biomechanics

r
Lr

∑ u
P

y

x
−L

Figure 7.1 The system in Problem 7.1.

7.1 Determine a control law u = lrr − Lx for the system P

a.
dx

dt
=









−0.5 0

1 0








x+









3

0








u

y =


 0 1


x

such that the poles of the closed loop system are placed in −4± 4i and
the stationary gain, from reference to output, is 1.

b.
dx

dt
=









−1 0

0 −2








x+









1

2








u

y =


 1 1


x

such that the poles of the closed loop system are placed in −4 and the
stationary gain is 1. How would you sketch the block diagram of the
closed loop system?

7.2

m

k

c

y(t)

f(t)

In the right figure, a mass m is attached
to a wall with a spring and a damper.
The spring has a spring constant k and the
damper has a damping constant c. It is as-
sumed that k > c2/4m. An external force
f is acting on the mass. We denote the
translation of the mass from its equilibrium position by y. Further, we
let f(t) be the input signal and y(t) be the output signal. The force
equation gives

mÿ = −ky − cẏ + f

Introduce the states x1 = y and x2 = ẏ and write down the state space
representation of the system.

7.3 Determine the transfer function and poles of the oscillating mass in the
previous exercise. Explain how the poles move if one changes k and c,
respectively. Can the poles end up in the right half plane?

7.4 When walking, the body is kept in upright position by some regulatory
system. This balancing of the body can be simplified to the problem of
controlling an inverted pendulum positioned on a cart, by moving the
cart. In Fig. 7.2, a schematic of this inverted pendulum is given.
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Chapter 7. Biomechanics

ϕ 

l   

z     

Figure 7.2 Inverted pendulum in exercise 7.4.

The control signal is the velocity of the cart v [m/s]. The position of the
cart z [m] and the angle of the pendulum ϕ are measured. The problem
is to decide upon a feedback controller wich stabilizes the pendulum
in its upright position as well as moves the cart towards some wanted
position. If the model for this inverted pendulum is linearized it can be
written as

dx1
dt

= ω0x2 + au

dx2
dt

= ω0x1

dx3
dt

= bu

where the state variables

x1 = kϕ
dϕ

dt
x2 = ω0kϕϕ

x3 = kzz

are used. They are all in unit [V]. The scalars kϕ, kv and kz are cali-
bration constants. The scalars a, b and ω0 are given by

a =
ω2
0kϕ
gkv

b =
kz
kv

ω2
0 =

g

ℓ

where g is the gravitational acceleration and ℓ the length of the pen-
dulum.

Assume that we can measure the given states. Determine a state feed-
back regulator which gives a closed loop system with poles in −α, and

−ω
(

ζ ± i
√

1− ζ2
)

.
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8. The Hodgkin-Huxley model

8.1 Given the ion concentration in the table below, calculate the equilib-
rium potentials of Na+, K+ and Cl− at room temperature, 25◦C, by
the Nernst equation.

Ion Inner conc. [µM] External conc. [µM]

Na+ 12 145

K+ 155 4

Cl− 4.2 123

How does the potentials change if the temperature is lowered 20 de-
grees?

8.2 Below is the Goldman Equation, giving the membrane potential V at
certain ion concentrations and permeabilities.

V =
RT

F
ln

(

PK [K]2 + PNa[Na]2 + PCl[Cl]1
PK [K]1 + PNa[Na]1 + PCl[Cl]2

)

Pi - permeability for ion [i], 1 - inner concentration and 2 - external
(outer) concentration.

a. How would you describe permeability?

b. Assume some initial permeability for each ion. If the permeability of
sodium (Na) would rise, how would this change the membrane poten-
tial? You can assume that the ion concentrations are the same as in
the previous exercise.

8.3 Write down the differential equation for the membrane potential of the
Hodgkin and Huxley model stated in lecture 8. Declare the different
constants and functions. Can you give a physiological description to
why this differential equation is non-linear? Hint: threshold potential.

8.4 The dynamics of the gating variables m, n and h are:

dm

dt
= αm (V ) (1−m)− βm (V )m

dh

dt
= αh (V ) (1− h)− βh (V ) h

dn

dt
= αn (V ) (1− n)− βn (V )n
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Chapter 8. The Hodgkin-Huxley model

where the rate functions are, unit [1/ms]:

αm (V ) = 0.1 (V + 45) / (1− exp (− (V + 45) /10))

βm (V ) = 4exp (− (V + 70) /18)

αh (V ) = 0.07exp (− (V + 70) /20)

βh (V ) = 1/ (1 + exp (− (V + 40) /10))

αn (V ) = 0.01 (V + 60) / (1− exp (− (V + 60) /10))

βn (V ) = 0.125exp (− (V + 70) /80)

a. What do the gating variables correspond to physiologically?

b. Plot αm (V ), βm (V ), αh (V ), βh (V ), αn (V ) and βn (V ) for values of
V between -90 and 70 [mV].

8.5 Look at the differential equation of the membrane potential, discussed
in exercises 8.3, if only the leakage and external currents are present.
That is

Cm
dV

dt
= −gL (V − EL) + Iext

In this case you don’t have to mind about the m, n and h func-
tions due to IL being independent of them. Solve the differential equa-
tion in MATLAB when the external current starts at 0 and increases
by 5 [µA/cm2], as a step, every 100 ms for 500 ms. Assume that
the initial membrane potential is the equilibrium potential of leakage
EL = −59.387 [mV], that gL = 0.3 [mS/cm2] and the membrane ca-
pacitance is Cm = 1[µF/cm2]. What happens?

8.6 R

L

Cvin

+

−

vout

+

−

iThe Hodgkin and Huxley model is
derived upon the idea of seeing the
membrane of the neuron as an elec-
trical circuit. As an example of an
electrical circuit see the RLC cir-
cuit to the right, the input and out-
put voltages are given by vin(t) and
vout(t), respectively. By means of Kirchhoff’s voltage law we see that

vin −Ri− vout − L
di

dt
= 0

For the capacitor, we additionally have

Cv̇out = i

Introduce the states x1 = vout and x2 = v̇out and give the state space
representation of the system.

In the Hodgkin and Huxley model the inductor L is not used. How does
the electrical circuit of the Hodgkin and Huxley model look like?

8.7 Determine the transfer function of the RLC circuit in the previous
assignment.
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9. Further Topics in Physiological Control

9.1 On page 183 in the text book and in Lecture 9, a model of the venti-
lation system based on an electrical analogy may be found. Here, the
model is instead derived from a mechanical viewpoint. The respiratory
tract (nasal cavity, pharynx, trachea, bronchi) and the lungs (the to-
tal collection of alveolars) can be thought of as a tube connected to
a (single) flexible membrane of volume V . Considering the gas flow to
be both incompressible and isotermic, we know from fluid mechanics
that the (laminar) flow rate V̇ in a tube is proportional to the pressure
difference between the pipe ends:

RV̇ = (pext − plung)

where R is a constant representing flow resistance, pext is the external
pressure and plung is the average lung pressure.

The force balance across the lung cavity with compliance C gives:

plung = V/C

and, thus:

V (s) =
C

1 +RCs
· pext(s)

a. Simulate a mechanical ventilation system with sinusoidal input, with
frequency 15 cycles per minute and with R = 2.4 and C = 0.1. Calcu-
late what the input amplitude should be such that the maximal volume
is 0.5 l, and use that in the simulation.

b. What happens if you try to increase the breathing frequency (to say
1 Hz)? Answer the question by looking at the Bode plot in Fig. 9.1.
Thereafter confirm your result by simulation.
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Figure 9.1 Bode plot of the respiratory system.
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Chapter 9. Further Topics in Physiological Control

9.2 Arterial 4-element Windkessel Model: The model is given by the fol-
lowing set of equations:

dp

dt
= − 1

RC
p+

1

C
q̇i

dq̇L
dt

= −Ra

L
q̇L +

Ra

L
q̇i

pa = p−Raq̇L +Raq̇i

a. Describe what the different elements of the model represents.

b. Give the transfer function.

c. Calculate the static gain.

d. Calculate the poles of the system.

e. Can the system become unstable?

9.3 In lecture 1, the following equation of energy balance was introduced,

E0 = W + Es +Q

where E0 is energy output, W is external work, ES is energy storage
and Q is heat. If you were about to derive the energy efficiency of some
system, how would you do that?
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10. System Identification

10.1 Try to fit a first order polynomial a+bx to the following measurements
by the least squares method. Check your result in MATLAB by plotting
the points and the polynomial obtained.

x y

1 3

3 5

5 6

7 7

a. What happens to your fit if you add an extra measurement (x, y) =
(2, 3.5) to the measurements?

b. What happens if you loose one of the measurements?

10.2

a. Consider the following model,

q̇(t) = −kq(t) + u(t)

y(t) = q(t)/V

where u(t) = Dδ(t) is a bolus injection at time t = 0 of a drug and
y(t) is the measured drug concentration. V is the volume of the com-
partment and k is the rate constant. Are the parameters k and V
identifiable?

b. Consider the following two compartment model where a bolus injection
is given at time zero and where the measured variable is the concen-
tration of drug in plasma in compartment 1. The equations describing
the model are,

q̇1(t) = −(k01 + k21)q1(t) + u(t)

q̇2(t) = k21q1(t)

y(t) =
q1(t)

V1

where q1(0) = q2(0) = 0 and V1 is the volume in compartment 1. Are
you able to determine the three unkown parameters k01, k21 and V1?
Compare with part a of this exercise.

10.3 Consider the data set of paired data in the table below.

u y

1 6

2 17

3 34

4 57
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Chapter 10. System Identification

Adopt the following model

y = a+ bu+ cu2

and

a. estimate the parameters a, b and c by the least squares method ana-
lytically.

b. Add noise to some of the measurements y by MATLABs function randn.
How does this affect the estimates of the parameters?

10.4 Consider the measurements (x, y) given in the plot below. Would you
consider all measurements as valid?
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Figure 10.1 Measurements

10.5 Consider the following system,

ẋ =









−1 0

0 −1







x+









1

0







u

y =


 1 0


x

Are you able to observe both states? Are you able to control both
states?
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Chapter 10. System Identification

10.6 Consider the following scenario: A patient arrives to the hospital with
symptoms of metanol poisoning. The person is also heavily intoxicated
by ethanol and cannot give any answer to how much, or when, he
consumed the ethanol/methanol. As a basis for determining the optimal
treatment decision, the doctor would like a prognosis of the level of
the toxic metabolite formic acid as well as the methanol concentration.
Serum samples are collected once every hour to assess the level of formic
acid. A simplified model of the metabolism of metanol and formic acid
is provided below.

All methanol is believed to already have been absorbed from the gut,
and is modelled by a single compartment with a half-life of 17 hours
and a distribution volume VD of 50 liter. The formic acid is believed to
be formed in the liver with a rate proportional to the metanol content
with a rate constant rL = 0.7mmol · g−1 · h−1. The formic acid is
distributed over two compartments, representing blood and liver, with
exchange coefficients kLB = 0.25h−1 (from liver to blood) and kBL =
0.2h−1 (from blood to liver), and is eliminated from the liver with an
elimination rate of ke = 0.15h−1. The compartment volumes for the
formic acid are VL = 1.2 l (liver) and VB = 5.7 l (blood). Methanol has
a density of 0.798 kg/l and a molar weight of 32 g/mol.

a. Derive a state-space model of the system, with the formic acid blood
concentration as the output variable y, and metanol content as state
x1 [g], liver content of formic acid as x2 [mmol] and blood content of
formic acid as x3 [mmol].

b. Now, estimates of the metanol and formic acid levels may be given using
the blood formic acid concentration samples and an observer. Let the
poles of the observer polymonial be at −0.6,−0.8,−1.0. Formulate the
analytical expression that needs to be solved in order to calcluate the
observer gain. Use place(X,Y, p), with X = AT and Y = CT and p
representing the poles, to derive the numerical result.

c. Use this observer and the formic acid concentration samples (Y ) in the
file (Metanoldata.mat) to estimate the states; x̂k+1|k. Initial measure-
ments of the blood methanol and formic acid concentrations at patient
arrival are 11.3 mmol/l and 17 mmol/l. You may assume the the liver
content of formic acid to be the same as that of blood upon arrival.
Use this to set up an initial state x̂0 of your state estimation.

d. Normally formic acid assays are not available, but regular methanol
test may be considered. Is it possible to use this biomarker instead to
estimate all the state variables?
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11. Extra

11.1 For a process with input u(t) and output y(t) it holds that

ÿ + (1 + y4)ẏ =
√
u+ 1− 2

a. Write the differential equation in state space form.

b. Linearize the state space equations around the point u0 = 3, y0 = 1,
ẏ0 = 0.

11.2 A model for the growth of bacteria in a bioreactor is given by

ẋ =









10 1

−1 −1







x+









0

1







u

y =


 1 0


x

where u is the inflow of a glucose solution to the reactor and y is the
mass of the bacteria.

a. Determine the transfer function from u to y as well as the differential
equation describing the relationship between the input and the output
of the system.

b. Determine a control law u = lrr−Lx for the system such that the poles
of the closed loop system are placed in −1 and −2 and the stationary
gain, from reference to output, is 1.

c. Determine a control law u = lrr−Lx for the system such that both poles
of the closed loop system are placed in −5 and −6 and the stationary
gain, from reference to output, is 1.

d. Compare the two closed loop systems, what is the difference between
the systems (given by the different pole placements)? Hint: plot the
step response of each of the closed loop systems and compare.

11.3 Determine the transfer functions and give differential equations, de-
scribing the relation between input and output for the following sys-
tems, respectively.

a.

ẋ =









−1 0

0 −4







x+









3

2







u

y =


 1 0


x+ 5u

b.

ẋ =









1 4

−2 −3








x+









−1

1








u

y =


 1 2


x+ 3u
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Chapter 11. Extra

11.4 Determine the impulse and step responses of the systems in assign-
ment 11.3.

11.5 Consider the system

G(s) =
0.25

s2 + 0.6s + 0.25

a. Calculate the poles and zeros of the system.

b. What is the static gain of the system?

c. Calculate the step response by hand and plot it in MATLAB.

11.6 transfer function from U to Y:

U + G1 + G2 Y

−H2

−H1
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Solutions to Chapter 0. Repetition of

Linear Algebra, Differential equations

and MATLAB

Solve the following exercises by hand. If you are unsure about how to
solve the exercises, please go back to your Linear algebra and Analysis
books and review the material needed.

0.1 a. x(t) = ct+ 1.

b. x(t) = ect.

c. The differential equation is separable. Rewrite it as

1

x2
dx = 2tdt. (0.1)

Integrating on both sides of the equal sign in (0.1) gives

−1/x = t2 + C

where C is a constant. Hence, x(t) = −1/(C + t2) and

x(0) = −1/C = 1 → C = −1.

The solution to the differential equation is therefore, x(t) = 1
1−t2

.

d. Introduce new variables. For instance denote them as x1(t) = y(t) and
x2(t) = ẏ(t) in order to rewrite the initial second-order differential
equation into two first-order differential equations as follows

ẋ1 = x2 (0.2)

ẋ2 = 3x1 − 7x2. (0.3)

The initial conditions for x1(t) and x2(t) are

x1(0) = y(0) = 0

x2(0) = ẏ(0) = 1.

Equations (0.2) and (0.3) can be written together on matrix form as
follows

(

ẋ1

ẋ2

)

=

(

x2

3x1 − 7x2

)

=

(

0 1

3 −7

)(

x1

x2

)

.

0.2
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Solutions to chapter 0. Repetition of Linear Algebra, Differential equations and MATLAB

a. det(A) = a · d− b · c

b. A−1 = 1
ad−bc

[

d −b

−c a

]

c. Determine λ in det(λI −A) = 0.

0.3

a. Define g(x) := df
dx = 2(x− 2). Then,

f(x) ≈ g(5)(x − 5) = 6x− 30.

It is a linear approximation of f(x) in x = 5.

b. See solution to exercise 2.4.

Solve the following exercises using MATLAB. These exercises are in-
spired by or fully extracted from EDA017: Föreläsningsanteckningar,
OCTAVE/MATLAB by Christian Söderberg.

0.4 Use the help function and MathWorks webpage.

0.5 a. Create an anonymous function using the function handle. This function
is only saved in your workspace until you close MATLAB (or clear you
workspace by the clear all command). In case you would like to
save your function as a file in your current folder (from where you can
reach it at another time), use a function m-file (go to new → function).

y = @(x) exp(−x/2)*cos(2*pi*x);

figure

fplot(y,[−6 3])

title('My fancy plot')

xlabel('x')

ylabel('y')

figure is a command which is useful when you want to create sev-
eral plots in the same script. Use the help-command whenever you
need information about one of MATLABs buildt-in functions. In this
case you would write help figure in the command window and the
description of the function figure should appear.

b.
axis([−4.5 −1 −10 10])

c. % Rewrite y to be accepted by quad/integral (read in the

% description of quad/integral to understand why).

% Add a "." before the multiplication sign.

y = @(x) exp(−x/2).*cos(2*pi*x);

integral(y,−4.5,−1)
% or

quad(y,−4.5,−1)
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Solutions to chapter 0. Repetition of Linear Algebra, Differential equations and MATLAB

d. f = @(x) xˆ3+2*x−1; solution = fsolve(f,0)

The answer is 0.4534. Write format long in the command window
(then use the fsolve command) to get more decimals in the answer.
Due to it being numerically calculated f(0.4534) is approximately zero.

0.6 Go to new → function. A file with a function-shell will appear. The
function shell looks like:
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Solutions to chapter 0. Repetition of Linear Algebra, Differential equations and MATLAB

function [ output args ] = untitled( input args )

%UNTITLED Summary of this function goes here

% Detailed explanation goes here

end

Replace untitled with the name of your function, input args with
the input your function needs and output args with the output your
function will give. Between the function-row and the end you should
write the code for the function.

For the particular function of this exercise, it will look as follows

function sumOfDiag = sumOfDiagonal(A)

[n,m] = size(A);

if n 6= m

error('A is not a square matrix')

end

sumOfDiag = sum(diag(A));

end

Where 6= is written as ˜= in MATLAB. Save your function as an m-file
in your current folder, by the name of your function. In this case it
would be ”sumOfDiagonal.m”. Now you can use your function directly
from the command window or from a script which is saved in the same
folder as your function.

To create a matrix in MATLAB use the following principle

my matrix = [1 2; 3 4];

[ and ] begins and ends the matrix. Elements are separated by space
(or comma) and rows are separated by ;. The resulting matrix is

(

1 2

3 4

)

0.7 The first part of the solution to this subproblem is identical to exer-
cise d. Introduce new variables. For instance denote them x1(t) = y(t)
and x2(t) = ẏ(t) in order to rewrite the initial second-order differential
equation into two first-order differential equations as follows

ẋ1 = x2 (0.4)

ẋ2 = 3x1 − 7x2. (0.5)

The initial conditions for x1(t) and x2(t) are

x1(0) = y(0) = 0

x2(0) = ẏ(0) = 1.
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Equations (0.4) and (0.5) can be written together on matrix form as
follows

(

ẋ1

ẋ2

)

=

(

x2

3x1 − 7x2

)

=

(

0 1

3 −7

)(

x1

x2

)

.

Define the vector v =

(

x1

x2

)

. Then, define f as the following function

f(t,v) = f

(

t,

(

x1

x2

))

=

(

ẋ1

ẋ2

)

.

Hence,

f(t,v) =

(

x2

3x1 − 7x2

)

=

(

0 1

3 −7

)(

x1

x2

)

.

In MATLAB, this can be written as

f = @(t,v) [v(2); 3*v(1)−7*v(2)];

Or by matrix multiplication

f = @(t,v) [0 1; 3 −7]*v;

To solve the differential equation write the following code

[t ode V] = ode45(f,[0 5],[0 1]);

The first input to ode45 is the right part of the differential equation,
the second input is the time span of the solution while the third is the
initial condition of the differential equation. V is a matrix with two
columns, the first column corresponds to x1(t) = y(t) and the second
column corresponds to x2(t) = ẏ(t). t ode is the times between 0 and
5 at which ode45 has calculated x1 and x2. Use the following code to
plot y(t) over 0 ≤ t ≤ 5

plot(t ode,V(:,1))

Solve the following exercises using SIMULINK in MATLAB. These ex-
ercises are taken from Exercises in MATLAB/Simulink, Signals and
Systems by Thomas Munther.

0.8 Start SIMULINK by writing simulink in the MATLAB command win-
dow. This makes the SIMULINK Library Browser window pop up. Go
to File → New → Model. In this window you can start to create your
SIMULINK model. Use the Library Browser to find appropriate blocks
and drag them into the model sheet. You can connect two blocks by
their connection spots.
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p and b can be defined in the current workspace. Go to display →
blocks and check ”Sorted Execution Order”. This will numerate the
blocks in the order in which they are first activated.

0.9 a. Before running the simulation go to Simulation → Configuration Pa-
rameters. In Solver Options choose Fixed-step and Solver → Discrete.
Set the sample time to 1 [sec].

b. The only difference from the previous model is that the minus sign in
the sum-block is changed to a plus sign.

0.10 Just play around.
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Solutions to Chapter 1. Biochemical

Reactions

1.1 a. Denote the concentrations x = [X] and y = [Y ]

dx

dt
= −k1x+ k−1y

dy

dt
= k1x− k−1y

[X] [Y ]

k1

k
−1

b. Denote the concentrations x = [X] and y = [Y ]

dx

dt
= −2k1x

2 + 2k−1y

dy

dt
= k1x

2 − k−1y

[X] [Y ]

k1x

k
−1

c.

Denote the concentrations x = [X], y = [Y ] and z = [Z]

dx

dt
= −3k1x

3y + 3k−1z

dy

dt
= −k1x

3y + k−1z

dz

dt
= k1x

3y − k−1z

1.2 A matlab script may look as follows:

% Simulation of the substrate, enzyme

% and product concentrations in a MM example

% ds/dt = −k 1 *(se) + k {−1}*c
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[X] [Y ]

[Z]

k1x
2

k
−1

% de/dt = −k 1 *(se) + (k {−1} + k 2)*c

% dc/dt = k 1 *(se) − (k {−1} + k 2)*c

% dp/dt = k 2 c

%−−−−−−−−−−−−−−−−−−−
% Initial conditions

s0 = 0.15; % mmol/L

e0 = 1e−2; % mmol/L

c0 = 0; % mmol/L

p0 = 0; % mmol/L

%−−−−−−−−−−−−−−−−−−−
% Parameters

k1 = 0.1;

k3 = 0.01; % k {−1}
k2= 0.02;

%−−−−−−−−−−−−−−−−−−−
% Run ode−solver simulation

% y = [S E C P]

dAll = @(t,y) [−k1*y(1)*y(2)+k3*y(3); ...

−k1*y(1)*y(2)+(k3+k2)*y(3); ...

k1*y(1)*y(2)−(k3+k2)*y(3); ...

k2*y(3)];

[t Y] = ode45(dAll,[0 10000],[s0 e0 c0 p0])

figure

[ax,h1,h2] = plotyy(t,[Y(:,1) Y(:,4)],t,[Y(:,2) Y(:,3)])

legend('Substrate','Product','Enzyme','Complex')

xlabel('time [s]')

ylabel(ax(1),'Substrate/Product Concentration [mmol/L]')

ylabel(ax(2),'Enzyme/Complex Concentration [mmol/L]')

title('Simulation of enzymatic reaction')

Doubling the enzymatic concentration doubles the production rate since
Vmax = k2 · e0. Likewise, since Km = (k2 + k−1)/k1 = 0.3 and

V =
Vmaxs

Km + s
,

a doubling of s0 from 0.15 (= Km/2) to 0.3 (= Km) means that the
initial reaction rate will become 1.5 times greater.

1.3
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Solutions to chapter 1. Biochemical Reactions

a. The plot indicates that the relationship between the reaction rate and
the substrate concentration goes to saturation in a M-M-like behavior,
see Fig.1.1. Vmax and Km are estimated as shown in the plot.
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Figure 1.1 Graphical estimation of Vmax and KM

b. Lineweaver-Burke plot: The Michaelis-Menten relationship between sub-
strate concentrations [S] states that:

v =
Vmax[S]

Km + [S]

Taking the inverse yields:

1

v
=

Km

Vmax

1

[S]
+

1

Vmax

Now, the parameters Km/Vmax and 1/Vmax for this linear relationship
may be estimated from the plot as seen in Fig. 1.2.
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Figure 1.2 Graphical estimation of Vmax and KM using the Lineweaver-Burke

plot.
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[S] [E] [I]

[C1] [P ] [C2]

k−1

2

k1[E]
2

k2

k2 +
k−1

2

k1[S]
2

k3[E]
2

k−3

k3[I]
2

k−3

Figure 1.3 Compartment model representation of the enzyme inhibition dynam-

ics.

1.4 Draw a graph of the compartment representation, see Fig 1.3. Next,
determine the differential equations governing the reaction dynamics:

d[S]

dt
= −k1[S][E] + k−1[C1] (1.1)

d[I]

dt
= k−3[C2]− k3[E][I] (1.2)

d[C1]

dt
= k1[S][E]− (k−1 + k2)[C1] (1.3)

d[C2]

dt
= k3[E][I]− k−3[C2] (1.4)

d[E]

dt
= (k2 + k−1)[C1] + k−3[C2]− k1[S][E]− k3[E][I] (1.5)

d[P ]

dt
= k2[C1] (1.6)

Next, use the steady-state assumptions; d[C1]/dt = d[C2]/dt = 0 to get

[C1] =
k1

k−1 + k2
[S][E] (1.7)

[C2] =
k3
k−3

[E][I] (1.8)

The conservation of enzymatic mass gives

[E0] = [E] + [C1] + [C2] = [E](1 +
k1

k−1 + k2
[S] +

k3
k−3

[I]) (1.9)

Put Eq. (1.6), Eq. (1.7) and Eq. (1.9) together:

V =
d[P ]

dt
=

k2[E0][S]

[S] + k−1+k2
k1

(1 + k3
k−3

[I])
(1.10)

1.5 Blood alcohol level
A matlab script may look as follows:

% BAL simulation

V = −15;% mg/(dl*h)
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Solutions to chapter 1. Biochemical Reactions

K m = 5;% mg/dl

VD = 10*(20 + 0.36*80−0.1*25); % dl

% The 'initial value' of the concentration [A] is actually

% the concentration in t = 20 min when the metabolization

% of the alcohol starts.

initial value A = 2*8*1000/VD; % mg/dl

% See comment below

% Define the differential equation y(t) = [A](t)

dAdt = @(t,y) V/60*y/(K m+y);

% Solve the differential equation

[t, Y] = ode45(dAdt, [0 220], initial value A);

t = (t+20)/60; % Shifting the time vector 20 min, and changing into

% hours instead of minutes.

Y = [zeros(size(0:0.1:(t(1)−0.01))) Y']; % Adding zeros to the

% value−vector for time 0−20 min.

t = [0:0.1:(t(1)−0.01) t']; % Adding the time between 0−20 minutes

% to the time vector.

plot(t,Y)

title('Blood Alcohol Level after ingesting 2 cl alcohol ...

(about one pint of beer) in 20 minutes','Fontsize',10)

ylabel('BAL [mg/dl]','Fontsize',10)

xlabel('time [h]','Fontsize',10)

The initial value of [A] [mg/dl] is calculated as follows. First we convert
the volume 2 cl into m3:

2 cl = 2 · 0.01 l = 2 · 0.01 dm3 = 2 · 0.01 · 10−3 m3 = 2 · 10−5 m3.

Now we convert the density 800 kg/m3 into mg/m3:

8 · 100 kg/m3 = 8 · 105 g/m3 = 8 · 108mg/m3.

Thus,

2 cl · 800 kg/m3 = 2 · 10−5 m3 · 8 · 108 mg/m3 = 2 · 8 · 103 mg

and [A]0 = 2 · 8 · 1000/VD [mg/dl].

Running the code generates the plot in Fig. 1.4.

1.6

a.

dS

dt
= −βIS

dI

dt
= βIS − γI

dR

dt
= γI.
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Figure 1.4 Blood alcohol content according to the simulation example.

b. Given the balance equations in the previous subproblem the following
relation can be derived

dS

dt
+

dI

dt
+

dR

dt
= 0.

Thus,
S(t) + I(t) +R(t) = constant

which means that the size of the population is constant over time. At
time t = 0, i.e., before the outbreak of the epidemic, it can be assumed
that S(0) = N where N is the size of the population. Furthermore,
I(0) = 0 and R(0) = 0. Hence S(t) + I(t) +R(t) = N .
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Linearization

2.1

a. By concentration of substrate, we have

dx1
dt

= −kx1 + u

dx2
dt

= kx1 − kx2

y = x2

The states are x1 and x2. The input is u and the output is y.

b.









ẋ1

ẋ2







 =









−k 0

k −k

















x1

x2







+









1

0







u

y =


 0 1












x1

x2









c.

G(s) = C(sI −A)−1B +D

= (0 1 )

(

s+ 1 0

−1 s+ 1

)−1 ( 1

0

)

=
1

(s+ 1)2
.

% State the state space matrices

A = [−1 0 ; 1 −1];
B = [1 ; 0];

C = [0 1];

D = []; % Empty matrix

% Construct the state space system

system = ss(A,B,C,D);

% Contruct the transfer function

G = tf(system)

% OR after having decided the transfer function

% analytically use

s = tf('s'); % To create the Laplace variable

G = 1/(s+1)ˆ2;
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2.2

















ẋ1

ẋ2

ẋ3

















=

















0 1 0

0 0 1

−1 −2 −3

































x1

x2

x3

















+

















0

0

1

















u

y =


 1 0 0




















x1

x2

x3

















2.3 a.

ẋ1 = x2

ẋ2 = −√
x1 − x1x2 + u2

y = x1

b. A stationary point implies ẋ1 = ẋ2 = 0. From the first equation we
directly obtain x2 = 0. Subsequently, the second equation yields

√
x1 =

u2. Hence there are infinitely many stationary points and they can be
parametrized through t as (x01, x

0
2, u

0) = (t4, 0, t).

c. u0 = 1 gives the stationary point (x01, x
0
2, u

0) = (1, 0, 1). We let

f1(x1, x2, u) = x2

f2(x1, x2, u) = −√
x1 − x1x2 + u2

g(x1, x2, u) = x1

Do taylorexpansion of these functions in the stationary point and use
only the linear terms to linearize the system. Start by computing the
partial derivatives

∂f1
∂x1

= 0
∂f1
∂x2

= 1
∂f1
∂u

= 0

∂f2
∂x1

= − 1

2
√
x1

− x2
∂f2
∂x2

= −x1
∂f2
∂u

= 2u

∂g

∂x1
= 1

∂g

∂x2
= 0

∂g

∂u
= 0

At the stationary point we have

∂f1
∂x1

(x01, x
0
2, u

0) = 0
∂f1
∂x2

(x01, x
0
2, u

0) = 1
∂f1
∂u

(x01, x
0
2, u

0) = 0

∂f2
∂x1

(x01, x
0
2, u

0) = −1

2

∂f2
∂x2

(x01, x
0
2, u

0) = −1
∂f2
∂u

(x01, x
0
2, u

0) = 2

∂g

∂x1
(x01, x

0
2, u

0) = 1
∂g

∂x2
(x01, x

0
2, u

0) = 0
∂g

∂u
(x01, x

0
2, u

0) = 0

Use the following variable substitution
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∆x1 = x1 − x01

∆x2 = x2 − x02

∆u = u− u0

The linearized system is then









∆ẋ1

∆ẋ2







 =











∂f1
∂x1

(x01, x
0
2, u

0) ∂f1
∂x2

(x01, x
0
2, u

0)

∂f2
∂x1

(x01, x
0
2, u

0) ∂f2
∂x2

(x01, x
0
2, u

0)



















∆x1

∆x2







+











∂f1
∂u (x

0
1, x

0
2, u

0)
∂f2
∂u (x

0
1, x

0
2, u

0)











∆u

∆y =




∂g
∂x1

(x01, x
0
2, u

0) ∂g
∂x2

(x01, x
0
2, u

0)












∆x1

∆x2








+

∂g

∂u
(x01, x

0
2, u

0)∆u

Where the derivates are given as their value in the stationary point.
Using the specific values gives









∆ẋ1

∆ẋ2







 =









0 1

−1
2 −1

















∆x1

∆x2







+









0

2







∆u

∆y =


 1 0












∆x1

∆x2









2.4 At the sought operating point it holds that

0 = x21x2 + 1

0 = x1x
2
2 + 1

y = arctan
x2
x1

+
π2

8

which yields x01 = −1, x02 = −1 and y0 = π
4 + π2

8 . Computation of the
partial derivatives now yields

∂f1
∂x1

= 2x1x2
∂f1
∂x2

= x21
∂f1
∂u

=
√
2 cos u

∂f2
∂x1

= x22
∂f2
∂x2

= 2x1x2
∂f2
∂u

= −
√
2 sinu

∂g

∂x1
=

−x2
x21 + x22

∂g

∂x2
=

x1
x21 + x22

∂g

∂u
= 4u

With the variable substitution

∆u = u− π

4
∆x1 = x1 + 1

∆x2 = x2 + 1

∆y = y − π

4
− π2

8
.
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the linearized system becomes









∆̇x1

∆̇x2








=









2 1

1 2

















∆x1

∆x2








+









1

−1








∆u

∆y =




1
2 −1

2













∆x1

∆x2







+ π∆u.

2.5 Blood Doping

The system dynamics are:

R(k + 1) = (1− f) ·R(k) + r(k), R(0) = Rref

r(k + 1) = 0.9 · r(k) + u(k), r(0) = f · Rref

u(k) =

{

0.025 if k = [0− 19, 41 − 99]

0.05 if k = [21− 40]

The matrices in the Simulink discrete state space block thus are:

A =

[

(1− 1/120) 1

0 0.9

]

B =

[

0

1

]

C =

[

0 1

1 0

]

D =

[

0

0

]

The initial conditions are:

x0 =

[

0.25 · 120
0.25

]

Define epo in the Matlab workspace as:

>> epo(:,1)= 0:99;

>> epo(:,2) = 0.025*ones(100,1);

>> epo(20:40,2)= 0.05;

Further, use the discrete time setting in the solver in simulink.

2.6 The Simulink model can be seen in Fig. 2.1.

If α becomes large the bacteria outgrow the neuthrophiles and uncon-
trolled bacterial growth occurs.
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u

gamma

−K−

beta
−K−

alpha

−K−

Product

Leukocytes

Integrator1

1
s

Integrator

1
s

Bacteria

Figure 2.1 Simulink model for the Predator-Prey system

2.7 After the Laplace transform, one obtains

sX = AX +BU

Y = CX +DU

Solve for X

(sI −A)X = BU

X = (sI −A)−1BU

This gives

Y = C(sI −A)−1BU +DU =
(

C(sI −A)−1B +D
)

U
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Physiology 1

3.1 a. The transfer function is

G(s) = C(sI −A)−1B +D

= (−1 1 )

(

s+ 2 0

0 s+ 3

)−1( 5

2

)

+ 2

=
2s2 + 7s+ 1

s2 + 5s + 6
.

From the transfer function it is easy to determine the differential equa-
tion

Y (s) = G(s)U(s)

(s2 + 5s+ 6)Y (s) = (2s2 + 7s+ 1)U(s)

ÿ + 5ẏ + 6y = 2ü+ 7u̇+ u

b. The transfer function is

G(s) = C(sI −A)−1B +D

= (−2 1 )

(

s+ 7 −2

15 s− 4

)−1( 3

8

)

=
2s + 3

s2 + 3s+ 2
.

The differential equation becomes

Y (s) = G(s)U(s)

(s2 + 3s + 2)Y (s) = (2s + 3)U(s)

ÿ + 3ẏ + 2y = 2u̇+ 3u

3.2 a. Partial fraction expansion of the transfer function yields

G(s) = 2 +
2

s+ 3
− 5

s+ 2

and by applying the inverse Laplace transform, one obtains the impulse
response

h(t) = L−1G(s) = 2δ(t) + 2e−3t − 5e−2t, t ≥ 0.

Comment. Because the system matrix was given in diagonal form, another
possibility would have been to compute the impulse response as

h(t) = CeAtB +Dδ(t) =


−1 1












e−2t 0

0 e−3t

















5

2







+ 2δ(t), t ≥ 0.
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The step response is computed by e.g. integrating the impulse response

y(t) =

∫ t

0
h(τ)dτ =

∫ t

0

(

2δ(τ) + 2e−3τ − 5e−2τ
)

dτ

= 2 +

[

5

2
e−2τ − 2

3
e−3τ

]t

0

=
1

6
+

5

2
e−2t − 2

3
e−3t, t ≥ 0.

The step response can also be obtained by the inverse Laplace transform
as follows

y(t) = L−1(G(s)·1
s
) = L−1

(

2

s
+

2

s(s+ 3)
− 5

s(s+ 3)

)

=
1

6
+
5

2
e−2t−2

3
e−3t, t ≥ 0.

In MATLAB, the following code can be used

% Define the matrices

A = [−2 0 ; 0 −3];
B = [5;2];

C = [−1 1];

D = 2;

% Create the state space representation of the system

system = ss(A,B,C,D);

% Impulse response

impulse(system)

% Step response

step(system)

Comment. The δ(t)-part of the impulse response is not depicted when using

impulse in MATLAB. It would be an infinite spike at t = 0.

b. The transfer function has the partial fraction expansion

G(s) =
1

s+ 1
+

1

s+ 2

and the impulse response becomes

h(t) = L−1G(s) = e−t + e−2t, t ≥ 0.

The step response is thus given by

y(t) =

∫ t

0
h(τ)dτ =

3

2
− e−t − 1

2
e−2t, t ≥ 0.

In MATLAB, the following code can be used
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% Define the transfer function from the result in the previous exercise

s = tf('s'); % Determine frequency variable

G = (2*s+3)/(sˆ2+3*s+2);

% Impulse response

impulse(G)

% Step response

step(G)

3.3 a. The poles are the solutions of the characteristic equation s2+4s+3 = 0,
i.e. s = −1 and s = −3. The system lacks zeros. The poles are in the
left half-plane and the system is therefore stable.

b. The input (an impulse) has the Laplace transform U(s) = 1. The out-
put becomes

Y (s) = G(s)U(s) =
1

s2 + 4s + 3
=

1

(s+ 1)(s + 3)

Inverse Laplace transformation gives

h(t) =
e−t − e−3t

2

The following code results in a plot of the impulse response:

s = tf('s');

G = 1/(sˆ2+4*s+3);

impulse(G)

c. The input (a step) has the Laplace transform U(s) = 1/s. The output
becomes

Y (s) = G(s)U(s) =
1

s2 + 4s + 3

1

s
=

1

s(s+ 1)(s + 3)

Inverse Laplace transformation gives

h(t) =
1

3
+

1

6

(

e−3t − 3e−t
)

The following code results in a plot of the step response:

s = tf('s');

G = 1/(sˆ2+4*s+3);

step(G)

3.4 To be asymptotically stable, all eigenvalues of the system matrix A
must lie strictly within the left half plane (LHP). I.e. Re(λi) < 0 ∀ i.

The eigenvalues of A are given by the characteristic equation

det(λI −A) = 0.
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a. The eigenvalues are given by λ1 = −1 and λ2 = −2. Thus, this system
is asymptotically stable.

b. The eigenvalues are given by λ1 = 1 and λ2 = 2 and the system is
unstable.

c. The eigenvalues are given by λ1 = −i and λ2 = i. Since the eigenvalues
do not lie strictly within the LHP, the system is not asymptotically
stable. However, it is still defined as stable as the eigenvalues do not
lie in the right half plane (RHP). It is easy to see the dfifference in the
two stability notions asymptotic stability and stability by comparing
the step responses of the systems in a and c.

3.5 a.

Y = G1(U +G2Y )

Y (1−G1G2) = G1U

Y =
G1

1−G1G2
U

b.

Y = G2(H1U +G1U +H2Y )

Y (1−G2H2) = (G2H1 +G2G1)U

Y =
G2H1 +G2G1

1−G2H2
U

c. Introduce the auxiliary variable Z, being the output of G1

Z = G1(U +G3(Z +G2Z))

Z(1−G1G3 −G1G3G2) = G1U

Z =
G1

1−G1G3 −G1G3G2
U

Y =
G2G1

1−G1G3 −G1G3G2
U

3.6 a. The output is given by

y(t) = |G(3i)| sin
(

3t+ argG(3i)
)

where

|G(iω)| = 0.01
√
1 + 100ω2

√
1 + ω2

√
1 + 0.01ω2

and
argG(iω) = arctan 10ω − arctanω − arctan 0.1ω

For ω = 3 one obtains |G(iω)| = 0.0909 and argG(iω) = −0.003 which
gives

y(t) = 0.0909 sin(3t− 0.003)
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Solutions to chapter 3. Control in Physiology 1

b. Reading from the plot yields |G(3i)| ≈ 0.09 and argG(3i) ≈ 0. Thus,
we obtain

y(t) = 0.09 sin 3t
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Solutions to Chapter 4. Control in

Physiology 2

4.1 a. Laplace transformation of the differential equation yields

sY (s) + 0.01Y (s) = 0.01U(s)

The transfer function GP (s) is thus given by

Y (s) = GP (s)U(s) =
0.01

s+ 0.01
U(s)

b. The block diagram of the closed loop system becomes

Σ
r e u y

GR GP

−1

The transfer function of the closed loop system becomes

G(s) =
GP (s)GR(s)

1 +GP (s)GR(s)

c. GR(s) = K, K is a constant, and the transfer function of the closed
loop system becomes

G(s) =
GP (s)GR(s)

1 +GP (s)GR(s)
=

0.01
s+0.01K

1 + 0.01
s+0.01K

=
0.01K

s+ 0.01 + 0.01K

d. The desired and actual characteristic polynomials are the same if all
their coefficients match. Identification of coefficients yields

0.1 = 0.01 + 0.01K ⇔ K = 9

4.2 a. For the closed loop system it holds that

Y (s) = N(s) +GP (s)GR(s)R(s)−GP (s)GR(s)Y (s)

from which one obtains

Y (s) =
1

1 +GP (s)GR(s)
N(s) +

GP (s)GR(s)

1 +GP (s)GR(s)
R(s)

Here we see the transfer function from both inputs, n and r, to y. The
one we are interested in is the transfer function from n to y

Y (s) =
1

1 +GP (s)GR(s)
N(s) (4.1)
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Solutions to chapter 4. Control in Physiology 2

b. Inserting GP (s) =
1

s+1 and GR(s) = K into (4.1) yields the relations

Y (s) =
s+ 1

s+ 1 +K
N(s) =: Gyn(s)N(s)

In stationarity it holds that

y(t) = A|Gyn(iω)| sin(ωt+ argGyn(iω))

= A

√
1 + ω2

√

(K + 1)2 + ω2
sin

(

ωt+ arctanω − arctan
ω

K + 1

)

c. With A = 1 and K = 1 the amplitudes of the oscillations

A =

√

1 + ω2

4 + ω2

For ω = 0.1 rad/s the amplitude become

A ≈ 0.5

while ω = 10 rad/s yields
A ≈ 1

4.3 a. The sensitivity function is given by

S(s) =
1

1 +GP (s)GR(s)
=

1

1 + 6.5
(s+1)3

=
s3 + 3s2 + 3s + 1

s3 + 3s2 + 3s+ 7.5

b. For ω = 0 rad/s we have |S(iω)| = 1/7.5. Constant load disturbances
are thus damped by a factor 7.5. The sensitivity functions has its max-
imum value |S(iω)| ≈ 10 at ω ≈ 1.6 rad/s.

4.4 Open-loop transfer function:

Go(s) =
K(s+ 10)(s + 11)

s(s+ 1)(s + 2)
= K

Q(s)

P (s)

Closed-loop system becomes:

G(s) =
Go(s)

1 +Go(s)
=

KQ(s)

P (s) +KQ(s)

Characterstic equation:

P (s) +KQ(s) = 0 ⇔

s(s+ 1)(s + 2) +K(s+ 10)(s + 11) = 0 ⇔
s3 + (3 +K)s2 + (2 + 21K)s+ 110K = 0
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Solutions to chapter 4. Control in Physiology 2

Requirement for stability is that all coefficients of:

s3 + (3 +K)s2 + (2 + 21K)s + 110K

are positive, and that

(3 +K)(2 + 21K) > 110K

THe inequality gives

K2 − 15

7
K +

2

7
> 0

Which is fulfilled for K > 2 and K < 1/7. Thus, the closed-loop system
is stable for:

0 < K <
1

7

and
K > 2

4.5 The problem is solved using the Nyquist criterium. The open-loop sys-
tem is given by:

GP (s) =
e−9s

(1 + 20s)2

The phase of the process is:

argGP (iω) = −9ω − 2 arctan(20ω)

We want to find the frequency for which the phase is −180◦. This can
be calculated by:

−9ω − 2 arctan(20ω) = −π

This equation lacks analytical solutions. After an initial guess and some
numerical iterations we get:

ω0 ≈ 0.1

Next we determine the gain at this frequency:

|G(iω0)| =
1

1 + 400ω2
0

= 0.2

This yields the amplitude margin:

Am =
1

G(iω0)
= 5

Therefore, the gain K = 5 is the largest gain we can allow and still
maintain stability.
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Solutions to Chapter 5. Pharmacokinetics

and Tracers

5.1 C(t) is the concentration at time t. The initial condition and balance
equation of the system are the following

C0 = 300 [units/ml]

dC

dt
= −kC

The solution of the differential equation is

C(t) = C0e
−kt

After 8 days, the concentration is halved. Therefore, if the half-life is
stated as t1/2 = 8, the concentration at t1/2 is given by

C(t1/2) =
C0

2
= C0e

−kt1/2

Thus k is,

k =
ln(2)

t1/2
=

0.6931

8
= 0.0866 days−1

Hence the formula for the concentration is given by

C(t) = C0e
−0.0866·t [units/ml] (5.1)

When t = 7 [days]

C(7) = C0e
−0.0866·7 = 163 [units/ml]

Plot equation (5.1) using MATLAB.

5.2 Use the same procedure as in exercise 5.1 to get k. Then use the fol-
lowing equation

log(
C0

0.4 · C0
) =

k · t
2.3

or of course if you use the natural logarithm,

ln(
C0

0.4 · C0
) = k · t

It takes approximately 8 days.
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Solutions to chapter 5. Pharmacokinetics and Tracers

5.3 Use the same equation as in exercise 5.2. Set t = 25 [days] and C0/C =
90/80 to determine k. Then determine t1/2 by using the derived k and
C0

C = 2.

The half-life is 147 days.

5.4

a. Start by drawing a diagram of the compartments.

b. The state-space representation only considering the oral input becomes:





Q̇G

Q̇B

Q̇L



 =





−(ke,G + kGB) 0 0

kGB −(ke,B + kBL) kLB

0 kBL −(ke,L + kLB)









QG

QB

QL



+





1

0

0



Qod

y =
1

VL
[ 0 0 1 ]





QG

QB

QL





where QG, QB, QL [mg/dl], are the drug masses in the gut, body
and liver compartment, and Qod [mg/min] is the rate of the orally
administered drug.

c. Simulating the system with this oral prescription produces the curve
in Fig. 5.1 below. Se code in the end of the solution to this exercise.
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Figure 5.1 Liver concentration at 500 mg dose
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Solutions to chapter 5. Pharmacokinetics and Tracers

d. Simulating the system with this oral prescription every 24 hours pro-
duces the blue curve in Fig. 5.2 below. The output oscillates heavily
with a 24 hour period. An alternative medication strategy to reduce
the oscillations and to keep the concentration more even could be to
administer the drug in half the dose every 12 hours instead (green
curve).

e. To determine the constant iv-dose we need to augment the original
model to incorporate this extra input. The new system, withQiv [mg/min]
as the intravenuous injection rate, becomes:







Q̇G

Q̇B

Q̇L






=







−(ke,G + kGB) 0 0

kGB −(ke,B + kBL) kLB

0 kBL −(ke,L + kLB)













QG

QB

QL






+







1 0

0 1

0 0







[

Qod

Qiv

]

y =
1

VL

[

0 0 1
]







QG

QB

QL







To determine the constant dose Qc
iv needed to maintain a steady-state

concentration yc = 104 mg/dl, the static gain GY Qiv(0) of the transfer
function from input Qiv to the output y is calculated. The transfer
function is:

GY Qiv(s) = C(sI −A)−1B2

where B2 is the second column of the B-matrix. A natural starting
point is to calculate the inverse of sI − A, here called Z. Calculating
the inverse to a 3x3 matrix by hand is generally a strenious and boring
task. However in this case we can exploit the fact that our B and C
matrices only single out one of the elements of Z:

GY Qiv(s) =
[

0 0 1
VL

]

Z







0

1

0






=

1

VL
Z32

Now, from the ’book of common results’, p. 2, where M23 is the matrix
retrieved when eliminating row 2 and column 3 from A:

Z32 = − |M23|
|sI −A|

=
(k1 + ke1)k23

(s+ k12 + ke1)((s + k23 + ke2)(s + k32 + ke3)− k23k32)

Z32(0) =
(k12 + ke1)k23

((k12 + ke1))((k23 + ke2)(k32 + ke3)− k23k32)

=
k23

k23ke3 + k32ke2 + ke2ke3
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Solutions to chapter 5. Pharmacokinetics and Tracers

GY Qiv(0) =
1

VL
Z32(0) = 396.12

and, thus:

Qc
iv =

yc

GY Qiv(0)
= 0.2625

Simulations in Matlab (red curve) in Fig 5.2 below confirms that the
constant intravenous injection eliminates the oscillations in liver con-
centration.
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Figure 5.2 Liver concentration at different medication strategies

Code for simulating the system with all three types of input.

%−−−−−−−−−−−−−
% Parameters

%−−−−−−−−−−−−−
ke1 = 0.02;% minˆ−1
ke2 = 3e−4;% minˆ−1
ke3 = 8e−4;% minˆ−1
k12 = 0.1;% minˆ−1
k23 = 4e−3;% minˆ−1
k32 = 1e−3;% minˆ−1
VL = 2.7; %dl

%−−−−−−−−−−−−−−
% Define system

%−−−−−−−−−−−−−−
A = [−(ke1+k12) 0 0;...

k12 −(ke2+k23) k32;...

0 k23 −(ke3+k32)];
B = [1 0;0 1;0 0]; % First input corresponds to oral and the second to iv

C = 1/VL*[0 0 1]; % Liver concentration [mg/dl]

D = [];

sys = ss(A,B,C,D);

%−−−−−−−−−−−−−−−−
% Setting up the input signals for the different cases

% 1. Oral dose 500 mg/24 hours

u tab = [100*ones(5,1); zeros(24*60−5,1)]; % 500 mg tablet dissolved
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Solutions to chapter 5. Pharmacokinetics and Tracers

% over 5 min

u = repmat(u tab,7,1); %repeat the dose

% 2. With half dose and 12 hour interval

u tab = [50*ones(5,1); zeros(12*60−5,1)]; % 250 mg tablet dissolved

% over 5 min

u2 = repmat(u tab,14,1); %repeat the dose

% 3. Constant iv infusion

% Determine iv dose size

static gain = dcgain(sys);

u iv mag = 112/static gain(2); % U2(0) = Y(0)/G(0);

u const = u iv mag * ones(length(u),1);

%−−−−−−−−−−−−−−−−−−−−−
% Simulation time

T = [0:1:length(u)−1];
% Initial values

x0 = [0;0;0]; % We assume that we start without any drug in the body

% Simulate

[y 1,T,x] = lsim(sys,[u zeros(size(u))],T,x0);

[y 2,T,x alt] = lsim(sys,[u2 zeros(size(u))],T,x0);

[y 3,T,x alt] = lsim(sys,[zeros(size(u)) u const],T,x0);

figure

plot(T/60,[y 1 y 2 y 3],'Linewidth',2)

legend('500 mg every 24 h','250 mg every 12h','constant IV infusion',...

'Location','SouthEast')

ylabel('Liver concentration [mg/dl]')

xlabel('Time [h]')

set(findall(gcf,'−property','FontSize'),'FontSize',20)
xlim([0 168])
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Solutions to Chapter 6. Glucose and Insulin

Dynamics

6.1 Insulin Sensitivity:

∂Ġ/∂G = −(p1 +X(t))

SI = ∂2Ġ/∂G∂I = −∂X(t)/∂I

Steady state conditions of insulin means:

dX(t)

dt
= 0 = −p2X(t) + p3(I(t) − Ib), X(0) = 0, I(0) = Ib

X(t) =
p3
p2

(I(t)− Ib)

SI = −∂X/∂I = −p3
p2

The experiment is dynamic and steady-state conditions of the insulin
level is not valid for most part of the experiment.

6.2 Minimal Model Simulation: The glucose response can be seen in Fig.
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Workspace
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−p3
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−p2

−K−

−p1

−K−

−1

−1

Figure 6.1 Minimal model Simulink model.

7.1.

6.3 kgri represents the kinetic coefficient between the solid and the liquid
compartments of the stomach. In comparison between boiled potatoes
and mashed potatoes it seems likely that the mashed potatoes would
have a larger value for this parameter, thereby resulting in faster dy-
namics.
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Figure 6.2 Minimal model Simulink model.

6.4 The differential equation becomes:

ĠISF (t) = −k3 ·GISF (t) + k3Gp

In the Laplace-domain:

L(GISF ) =
k3

k3 + s
L(Gp)

Thus, K = 1 and τ = 1/k3
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Solutions to Chapter 7. Biomechanics

7.1 a. The closed loop system becomes

{

ẋ = (A−BL)x+Blrr

y = Cx

The characteristic equation is thus

det(sI −A+BL) = s2 + (0.5 + 3l1)s+ 3l2 = 0

We need (s + 4 + 4i)(s + 4 − 4i) = s2 + 8s + 32 = 0. Identification of
coefficients yields l1 = 5/2 = 2.5, l2 = 32/3 = 10.7. The closed loop
transfer function is G(s) = C(sI −A+BL)−1Blr. The stationary gain
is G(0) is unity if

G(0) = C(−A+BL)−1Blr =
3lr
32

= 1

yielding lr = 32/3.

b. The closed loop system becomes

{

ẋ = (A−BL)x+Blrr

y = Cx

The characteristic equation is thus

det(sI −A+BL) = s2 + (3 + l1 + 2l2)s+ 2(1 + l1 + l2) = 0

We need (s + 4)2 = s2 + 8s + 16 = 0. Identification of coefficients
yields l1 = 9, l2 = −2. The closed loop transfer function is G(s) =
C(sI −A+BL)−1Blr. The stationary gain is G(0) is unity if

G(0) = C(−A+BL)−1Blr =
lr
4

= 1

yielding lr = 4.

(This type of controller can only be designed when the system is con-
trollable.)

7.2 With x1 = y and x2 = ẏ the system is given by









ẋ1

ẋ2








=













0 1

− k

m
− c

m





















x1

x2








+













0
1

m













f

y =


 1 0












x1

x2








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Solutions to chapter 7. Biomechanics

7.3 Laplace transformation of the differential equation mÿ + cẏ + ky = f
yields

(ms2 + cs + k)Y = F

and the transfer function is hence

G(s) =
1

ms2 + cs+ k
.

The poles are s = −c/2m± i
√

k/m− c2/4m2. A change in k implies a
change of the imaginary part of the poles. A change in c affects both
the real and imaginary parts.

The poles cannot end up in the right half plane due to physical reasons,
since c ≥ 0 and m > 0.

7.4 The system can be written as

ẋ =

















0 ω0 0

ω0 0 0

0 0 0

















x+

















a

0

b

















= Ax+Bu

With state feedback, u = −l1x1− l2x2− l3x3 = −Lx, the characteristic
equation of the closed loop system becomes

det
(

sI − (A−BL)
)

=

∣

∣

∣

∣

∣

∣

s+ al1 −ω0 + al2 al3

−ω0 s 0

bl1 bl2 s+ bl3

∣

∣

∣

∣

∣

∣

=

= s3 + (bl3 + al1)s
2 + ω0(−ω0 + al2)s− ω2

0bl3 = 0

Comparison with the wanted characteristic equation

(s+ α)(s2 + 2ζωs+ ω2) = s3 + (α+ 2ζω)s2 + (2αζω + ω2)s + αω2

gives


































l1 =
1

a

(

α
(

1 +
ω2

ω2
0

)

+ 2ζω

)

l2 =
1

aω0
(2αζω + ω2 + ω2

0)

l3 = −αω2

bω2
0
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Solutions to Chapter 8. The

Hodgkin-Huxley model

8.1 The Nernst equation for ion [i] is given by

Ei =
RT

zF
ln

(

Cout,i

Cin,i

)

where z - valence charge, Cout the ion concentration outside the cell, Cin

the ion concentration inside the cell, R - thermodynamic gas constant,
F - Faraday constant and T - temperature in Kelvin.

R = 8.31447 [J/mol·K], T = 273 + 25 [K] and F = 9.648534 · 104
[C/mol]. Hence, RT/F = 0.0257 [V] or 25.7 [mV].

Ion Inner conc. [µM] External conc. [µM] z

Na+ 12 145 1

K+ 155 4 1

Cl− 4.2 123 -1

Using the Nernst equation with the given values results in ENa = 64,
EK = −94 and ECl = −86 [mV].

If T is lowered by 20 degrees all equilibrium potentials will be lowered
by 1− (273 + 25− 20)/(273 + 25) = 0.0671, approximately 7 %.

8.2 a. How well a certain ion can pass through the membrane. Larger Pi means
that ion i har a large possibility of passing through the membrane, due
to many ion-channels being open.

b. If PNa would rise, this would shift the membrane potential closer to
the equilibrium potential of sodium (64 [mV]).

8.3

Cm
dV

dt
= −INa − IK − IL + Iext

where Cm is the membrane capacitance, Ii is the respective ion currents
given by the functions below and Iext is an external applied current.

INa = gNam
3h (V − ENa)

IK = gKn4 (V − EK)

IL = gL (V −EL)

When simulating the behavior of the membrane potential through this
differential equation, the notion of the threshold of the neuron describes
a non-linear behavior.
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Solutions to chapter 8. The Hodgkin-Huxley model

8.4 a. m(t) - Na+ activation (of channels)

h(t) - Na+ de-activation (of channels)

n(t) - K+ activation (of channels)

b. % Channel gating kinetics

% Functions of membrane voltage

alpha m = @(V) 0.1*(V+45)./(1−exp(−(V+45)./10));
beta m = @(V) 4*exp(−(V+70)./18);
alpha h = @(V) 0.07*exp(−(V+70)./20);
beta h = @(V) 1./(1+exp(−(V+40)./10));
alpha n = @(V) 0.01*(V+60)./(1−exp(−(V+60)./10));
beta n = @(V) 0.125*exp(−(V+70)./80);

Vsweep = [−90 70];

fplot(alpha m,Vsweep, 'r−');
hold on

fplot(beta m,Vsweep, 'r−−');

fplot(alpha h,Vsweep,'g−');
fplot(beta h,Vsweep, 'g−−');
fplot(alpha n,Vsweep,'b−');
fplot(beta n,Vsweep, 'b−−');
legend('alpha m', 'beta m', 'alpha h', 'beta h','alpha n', 'beta n' , ...

'Location', 'SouthEast');

xlabel('V (mV)');

ylabel('Kinetics Value');

xlim([Vsweep(1) Vsweep(end)]);

title('Channel Gating Kinetics');

8.5 g L = 0.3;

E L = −59.387;
C m = 1;

I L = @(V) g L*(V−E L);

I ext = @(t) 5.* floor(t ./ 100);

dVdt leak = @(t, V) (I ext(t) − I L(V)) ./ C m;

[t leak, V leak] = ode45(dVdt leak, [0 500], E L);

figure

subplot(2,1,1);

plot(t leak, V leak, 'k');

title('1B: Leaky Passive Neuron');

ylabel('V (mV)');

xlabel('t (ms)')

subplot(2,1,2);

plot(t leak, I ext(t leak), 'k');

xlabel('t (ms)');

ylabel('I {ext} (\mu{A}/cmˆ2)');
ylim([−1 max(I ext(t leak))+1]);

This simulates a passive membrane, it reacts to the external input by
only increasing the membrane potential. It will never create an action
potential.
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8.6 With states x1 = vout and x2 = v̇out, the system is given by









ẋ1

ẋ2








=








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




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
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
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






+


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
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
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
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
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Figure 8.1 Electrical circuit of the HH-model

8.7 G(s) =
1

LCs2 +RCs+ 1
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Solutions to Chapter 9. Further Topics in

Physiological Control

9.1

a. Pulmonary Ventilation: First, determine the gain at frequency 0.25 Hz
(π/2 rad/s):

|G(
πi

2
)| = 0.0936

Thus,

u = 0.5/|G(πi/2)|sin(πt/2)

Simulate by using, e.g., lsim or Simulink.

b. Increasing the breathing frequency with the same pressure magnitude
makes the breathing more shallow. This can be seen from the Bode
diagram by comparing the magnitude of the output at 1 Hz (approxi-
mately -25dB) to the magnitude at 0.25 Hz (appr. -20dB).

9.2

a. See Lecture 9

b. The system matrices become:

A =

[

− 1
RC 0

0 −Ra
L

]

B =

[

1
C
Ra
L

]

C =
[

1 −Ra

]

D = Ra

with x = [p q̇L], u = q̇i and y = pa.

c. The transfer function is given by:

G(s) = C(sI −A)−1B +D =
R

RCs+ 1
− Ra

L
Ra

s+ 1
+Ra

d. Static gain:

G(0) = R

e. The poles are (which can be seen directly from the A-matrix) − 1
RC and

−Ra
L .
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f. The system cannot become unstable since R,C,Ra are positive num-
bers.

9.3

Efficiency =
Workdone

EnergyExpenditure
=

W

W +Q
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Solutions to Chapter 10. System

Identification

10.1 Let the regressor matrix be

Φ =











1 x1

1 x2

1 x3

1 x4











=











1 1

1 3

1 5

1 7











where xi is the i-th value of x in the table given in the exercise.

The least squares solution is then

(

â

b̂

)

=
(

ΦTΦ
)−1

ΦTy =

(

2.65

0.65

)

where y = (3 5 6 7 )T .

Hint: there is a formula on how to compute the inverse of a 2-by-2
matrix.

In MATLAB it could be calucluated as

P = [1 1; 1 3; 1 5; 1 7];

y = [ 3 5 6 7]';

e = P\y;

% or

e = inv((P'*P))*P'*y;

Where a = e(1) and b =e(2). This uses the least squares method
to fit a+ bx to the points. Plot the points and the line in the same plot
to see the fit.

a = e(1);

b = e(2);

f = @(x) a +b*x;

figure

fplot(f,[1 7])

hold on

plot([1 3 5 7],y,'*r')

a. If you add an extra measurement the fit will change, meaning that your
fit is uncertain. In reality when you fit a function to measurements you’ll
have more then 4 measurement at hand.

b. If you loose one measurement the fit will change as well, differently
dependent on which measurement you loose. Loss of measurements are
common in reality and must be taken into account.
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Solutions to chapter 10. System Identification

10.2

a. The transfer function is G(s) = β
s+α where β = 1/V1 and α = k.

These are both identifiable. The system response can be determined
as y(t) = Dβe−αt. By examining the plot of the response β can be
detrmined as β = y(0)/D. Thereafter, α can be determined by any
other point on the curve of the system response.

b. The transfer function is G(s) =
1

V1
s+k21+k01

= β
s+α . V1 is uniquely identi-

fiable but k01 and k21 are not. Can only determine the sum of k01 and
k21, not separate them.

10.3

a. Let the regressor matrix be

Φ =











1 u1 u21
1 u2 u22
1 u3 u23
1 u4 u24











=











1 1 1

1 2 4

1 3 9

1 4 16











where ui is the i-th value of u in the table given in the exercise.

The least squares solution is then





â

b̂

ĉ



 =
(

ΦTΦ
)−1

ΦTy =





1

2

3





where y = ( 6 17 34 57 )T .

Hint: there is a formula on how to compute the inverse of a 3-by-3
matrix.

b. Dependent on the noise it could change the estimates in either direction.
It is common to have noisy measurements and therefore important to
use proper methods to account for this.

10.4 The third measurement from the left, (x, y) = (5, 25), seems off. This
could be an outlier and should be considered with caution.

10.5 No, is the answer to both questions. Due to that you only measure x1
and its dynamics is not dependent on x2 you are not able to observe
the second state x2. In a similar manner, due to that the control input
only affect state x1 and x2 is not dependent on x1, you can only control
state x1.

10.6
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Solutions to chapter 10. System Identification

a. First, let’s consider the methanol metabolism. Using the information
about the half-life the elimination constant is determined to:

ke,M =
ln 2

T1/2
= 0.041h−1

Using this together with the information about the formic acid metabolism,
a state-space model(A,C, no B orD since there is no input) of the com-
bined compartment models of the methanol and formal acid metabolism
becomes:

A =







−ke,M 0 0

rL −(kLB + ke,F ) kBL

0 kLB −kBL







C =
[

0 0 1/VB

]

with x1 representing methanol content, x2 the liver content of formic
acid and x3 the blood content of formic acid. Using an observer the
state estimation becomes

˙̂x = Ax̂+K(y − ŷ)

ŷ = Cx̂

and

x̃ = x− x̂

˙̃x = (A−KC)x̃

where

K =







k1

k2

k3







The characteristic polynomial:

det(sI −A+KC) =

∣

∣

∣

∣

∣

∣

∣

s+ ke,M 0 k1/VB

−rL s+ (kLB + ke,F ) −kBL + k2/VB

0 −kLB s+ kBL + k3/VB

∣

∣

∣

∣

∣

∣

∣

= (s+ ke,M )(s+ (kLB + ke,F )(s + kBL + k3/VB)+

kLB(−kBL + k2/VB)) + rL(kLBk1/VB)

should match:

(s− p1)(s − p2)(s− p3)
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Solutions to chapter 10. System Identification

where pi, i = [1, 2, 3] are the specified poles. After some algebra we can
conclude that:

k1 =
VB

rLkLB
(p1p2p3 − (ke,MkLBk2/VB + ke,MkEFk3/VB

+ ke,MkLBk3/VB + ke,MkEFkBL))

k2 =
VB

kLB
(p1p2 + p1p3 + p2p3 − ke,M (kLB + ke,F + kBL + k3/VB)

− kLBk3/VB − ke,FkBL − ke,Fk3/VB)

k3 = VB(p1 + p2 + p3 − ke,M − kLB − ke,F − kBL)

We can use place to verify the result:

% System

A = [−0.041 0 0 ; 0.7 −0.4 0.2; 0 0.25 −0.2];
C = [0 0 1/V B]; % We measure the formic acid concentration in blood

D = [];

% Determine observer gain

K = place(A',C',[−0.6 −0.8 −1.0])';
% Verify the eigenvalues of A−KC
eig(A−K*C)

b. Now, the measurements can be used as input in the observer system to
estimate the states:

˙̂x = (A−KC)x̂+Ky

(ŷ = Cx̂)

Below is a matlab script for determining the observer and to try the
observer on the data.

% Parameters

V D = 50; % methanol distribution volume [liter]

V L = 1.2; % Formic acid, liver volume [liter]

V B = 5.7; % Formic acid, blood volume [liter]

% System

A = [−0.041 0 0 ; 0.7 −0.4 0.2; 0 0.25 −0.2];
C = [0 0 1/V B]; % We measure the formic acid concentration in blood

D = [];

% Determine observer gain

K = place(A',C',[−0.6 −0.8 −1.0])';
% Simulate with data

load('metanol data')

% Set up the system for the estimated state using the observer.

% Here, the measurements will act as an input variable, and thus K

% will be our B−matrix.
sys est = ss(A−K*C,K,C,D);
x1 hat 0 = 11.3e−3*32*50; % Initial value of metanol converted

% to g in V d

x23 hat 0 = Y(1)*V B; % Initial value of formic acid in liver

% and in blood

x hat 0 = [x1 hat 0;x23 hat 0;x23 hat 0];

[Y hat,T hat,X hat] = lsim(sys est,Y(2:end),[2:length(Y)],x hat 0);

%−−−−−−−−−−−−
% Plots
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Solutions to chapter 10. System Identification

figure

%

subplot 311

plot(Y,'Linewidth',2)

hold all

plot(T hat,Y hat,'Linewidth',2)

ylabel(sprintf(['FA blood conc.\n[mmol/l]']))
%

subplot 312

plot(1000*X met,'Linewidth',2)

hold all

plot(T hat,1000*X hat(:,1)/(32*V D),'Linewidth',2)

ylabel(sprintf('Met. conc.\n [mmol/l]'))

%

subplot 313

plot(X fliver,'Linewidth',2)

hold all

plot(T hat,X hat(:,2)/V B,'Linewidth',2)

ylabel(sprintf('FA liver conc.\n [mmol/l]'))

xlabel('Time [h]')

legend('Data','Estimate')

set(findall(gcf,'−property','FontSize'),'FontSize',20)

The code produces the plot in Fig. 10.1 below.
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Figure 10.1 Measurements

c. No, it is not since the system is not fully observerable using this mea-
surement. This can be seen from that the observability matrix O does
not have full rank.

O =







C

CA

CA2







when

C =
[

VD 0 0
]
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Solutions to chapter 10. System Identification

With

C =
[

0 0 VB

]

however (using the formic acid blood concentration), the observability
matrix becomes

O =







0 0 0.17

0 0.04 −0.04

0.03 −0.03 0.02







and clearly has full rank.
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Solutions to Chapter 11. Extra

11.1a. Let x1 = y and x2 = ẏ. The state space form becomes

ẋ1 = x2

ẋ2 = −(1 + x41)x2 +
√
u+ 1− 2

y = x1

b.

∆ẋ =









0 1

0 −2







∆x+









0
1
4







∆u

∆y =


 1 0


∆x

where ∆x =









∆x1

∆x2








and ∆u = u − 3, ∆x1 = x1 − 1, ∆x2 = x2 − 0

and ∆y = y − 1.

11.2

a. The transfer function is

G(s) = C(sI −A)−1B +D

= ( 1 0 )

(

s− 10 −1

1 s+ 1

)−1 ( 0

1

)

=
1

(s− 10)(s + 1) + 1
.

It gives the following relationship

Y (s) =
1

(s − 10)(s + 1) + 1
U(s)

Which can be rewritten as

s2Y (s)− 9sY (s)− 9Y (s) = U(s)

Then, use the inverse Laplace transform to get the differential equation

ÿ − 9ẏ − 9y = u

b. The closed loop system becomes

{

ẋ = (A−BL)x+Blrr

y = Cx
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The characteristic equation is thus

det(sI −A+BL) = s2 + (l2 − 9)s+ l1 − 10l2 − 9 = 0

We need (s + 1)(s + 2) = s2 + 3s + 2 = 0. Identification of coefficients
yields l1 = 131, l2 = 12. The closed loop transfer function is G(s) =
C(sI −A+BL)−1Blr. The stationary gain is G(0) is unity if

G(0) = C(−A+BL)−1Blr = 0.5lr = 1

yielding lr = 2.

c. The closed loop system becomes
{

ẋ = (A−BL)x+Blrr

y = Cx

The characteristic equation is thus

det(sI −A+BL) = s2 + (l2 − 9)s+ l1 − 10l2 − 9 = 0

We need (s+5)(s+6) = s2+11s+30 = 0. Identification of coefficients
yields l1 = 239, l2 = 20. The closed loop transfer function is G(s) =
C(sI −A+BL)−1Blr. The stationary gain is G(0) is unity if

G(0) = C(−A+BL)−1Blr = lr/30 = 1

yielding lr = 30.

d. The second one is faster.

11.3a. G(s) =
5s+ 8

s+ 1
, ẏ + y = 5u̇+ 8u

b. G(s) =
3s2 + 7s+ 18

s2 + 2s+ 5
, ÿ + 2ẏ + 5y = 3ü+ 7u̇+ 18u

11.4a. h(t) = 5δ(t) + 3e−t, y(t) = 8− 3e−t, t ≥ 0

b. h(t) = 3δ(t) + e−t sin 2t+ e−t cos 2t = 3δ(t) +
√
2e−t sin

(

2t+ π
4

)

y(t) = 3 + 1
5e

−t (3 + sin 2t− 3 cos 2t) , t ≥ 0

11.5a. The poles are the solutions the characteristic equation s2+0.6s+0.25 =
0, i.e. s = −0.3± 0.4i. The system lacks zeros.

b. The static gain is G(0) = 1.

c. The input (a step) has the Laplace transform U(s) = 1/s. The output
becomes

Y (s) = G(s)U(s) =
0.25

s(s2 + 0.6s + 0.25)

Because this system has complex poles, we first rewrite it as

Y (s) =
ω2

s(s2 + 2ζωs+ ω2)

where ω = 0.5 and ζ = 0.6. We then utilize the inverse Laplace trans-
formation (transform no. 28) and obtain

y(t) = 1− 1.25e−0.3t sin(0.4t+ 0.9273)
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d. The step response is shown below.

Step Response
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11.6

Y = G2(−H2Y +G1(U −H1Y ))

Y (1 +G2H2 +G2G1H1) = G2G1U

Y =
G2G1

1 +G2H2 +G2G1H1
U
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