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1. The half-life of a drug solution is 4 days. Assume it is eliminated from

plasma as a linear process. If injected with the drug solution, how long

will it take for the concentration in plasma to drop to 10 % of the initial

concentration?

(2 p)

Solution

Set C(t) to be the concentration at time t. The initial condition and balance
equation of the system are the following

C(0) = C0 [units/volume]

dC

dt
= −kC

The solution of the differential equation is

C(t) = C0e
−kt

After 4 days, the concentration is halved. Therefore, if the half-life is stated

as t1/2 = 4, the concentration at t1/2 is given by

C(t1/2) =
C0

2
= C0e

−kt1/2

Thus k is,

k =
ln(2)

t1/2
=
0.6931

4
= 0.017 days−1

Then use the following equation

t =
1

k
⋅ ln

(

C0

0.1 ⋅ C0

)

It takes approximately 13,5 days.

2. The data in Table 1 describes the concentration and reaction rates of a che-

mical process. It is an enzymatic reaction following the Michaelis-Menten

relationship. Use the least-squares method to estimate the parameters Vmax
and Km.

(3 p)
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Tabell 1 Reaction Data for problem 2

Substrate Reaction

Concentration [mM] Velocity [mM/s]

0.1 0.04

1.0 0.24

2.0 0.32

5.0 0.42

Solution

The Michaelis-Menten relationship between substrate concentrations [S]
and reaction velocity v is:

v =
Vmax[S]

Km + [S]

Taking the inverse yields:

1

v
=
Km

Vmax

1

[S]
+

1

Vmax

Now, the parameters Km/Vmax and 1/Vmax for this linear relationship may
be estimated as follows:

Let the regressor matrix be

Φ =











1 1/s1

1 1/s2

1 1/s3

1 1/s4











=











1 10

1 1

1 0.5

1 0.2











where si is the i-th value of [S] in Table 1 given in the problem text.

The least-squares solution is then

(

â

b̂

)

=
(

ΦTΦ
)−1

ΦT y =

(

1.9

2.3

)

where y= ( 1/v1 1/v2 1/v3 1/v4 )
T
, â = 1/V̂max and b̂ = K̂m/V̂max .

Therefore

V̂max = 1/â = 0.52 [mM/s]

K̂m = b̂ ⋅ V̂max = 1.2 [mM]
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3. The Hodgkin and Huxley model: Assume we have a neuron wich can be

modeled by the Hodgkin and Huxley model stated in lecture 8. A neurotoxin

lowers the permeability of the ion Na+ across the neuron’s membrane to

approximately zero. What happens to the signaling properties of the cell?

(1 p)

Solution
Due to the permeability of Na+ being approximately zero, no such ions will

flow across the neuron’s membrane. Thus, INa will be zero. Then, the ope-

ning of the Na+-channel will not have any effect on the membrane potential

and the neuron will have difficulties depolarizing as usual (might not be
able to spike).

4. Calculate the transfer function from u to y for the linear system in Figure 1.

(2 p)

u
yx1

x2

x3 x4
G1(s) G2(s) G3(s) G4(s)

−1

Figur 1 The system in problem 4.

Solution

With the notation from the figure we get

X1(s) = G1(s)U(s)

X2(s) = G2(s)(U(s)(1+ G1(s)) − X3(s))

X3(s) = G3(s)X2(s)

X4(s) = G4(s)X3(s)

Thus,

X2(s) = G2(s)(U(s)(1+ G1(s)) − G3(s)X2(s)) =
G2(s)(1 + G1(s))

1+ G2(s)G3(s)
U(s)

Y(s) = X4(s) + X2(s) = G4(s)G3(s)X2(s) + X2(s)

=
G2(s)(1+ G4(s)G3(s))(1+ G1(s))

1+ G2(s)G3(s)
U(s)

The transfer function from u to y:

G(s) =
Y(s)

U(s)
=
G2(s)(1 + G4(s)G3(s))(1 + G1(s))

1+ G2(s)G3(s)
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5. An unstable process has the transfer function

Gp(s) =
3

s2 + 3s− 9

and is connected in negative feedback with a P-controller Gr(s) = K .

a. For what values of K is the closed-loop system (asymptotically) stable?

(2 p)

b. Assume that the reference signal to the closed-loop system is a sinusoidal

signal r(t) = sin(3t), and consider the system after a long time when all
transients have disappeared. What is the output signal y(t) of the closed-
loop system when K = 5?

(1 p)

Solution

a. The closed-loop transfer function is given by

Gcl(s) =
K 3
s2+3s−9

1+ K 3
s2+3s−9

=
3K

s2 + 3s− 9+ 3K

The poles of the system are thus given by:

p = −
3

2
±

√

45

4
− 3K

The closed-loop system will be asymptotically stable when all the poles are

strictly less than zero.

Therefore, the following must hold

√

45

4
− 3K <

3

2

3K >
45

4
−
9

4
= 9

K > 3

b. After the transient has decayed, the output signal is

y(t) = pGcl(3i)p sin(3t+ argGcl(3i))

where

Gcl(3i) =
3K

−32 + 9i− 9+ 3K
=

3K

3K − 18+ 9i
=

5

−1+ 3i
=

5(−1− 3i)

(−1+ 3i)(−1− 3i)
=
1

2
(−1− 3i)

This gives

y(t) =

√

5

2
sin(3t− π + arctan 3)
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6. A nonlinear system with two states (x1, x2) and one input signal (u) is
described by the differential equations

ẋ1 = (1− x
2
1)(2 − x2) + u

ẋ2 = −x2(x
2
2 − 1).

Locally the equations can be approximated by the linear system

∆ ẋ = A ⋅ ∆x + B ⋅ ∆u

around the stationary points.

a. Find all stationary points for u = 0 and determine the matrices A and B
for each point. (3 p)

b. For which stationary points are the linear approximations (asymptotically)
stable? (1 p)

Solution

a. By denoting f (x1, x2,u) = ((1− x
2
1)(2− x2) + u, −x2(x

2
2 − 1))

T we get

� f

�x
=









−2x1(2− x2) −(1− x21)

0 −3x22 + 1









� f

�u
=









1

0







 .

A and B are given by the above Jacobians evaluated at the stationary points.

There are six stationary points, that is, solutions to the equation

f (xo1, x
o
2, 0) = 0,

namely (1, 0), (1, 1), (1,−1), (−1, 0), (−1, 1) and (−1,−1).

The approximations are given by B = (1, 0)T for all stationary points, and

A(1, 0) =









−4 0

0 1







 A(1, 1) =









−2 0

0 −2









A(1,−1) =









−6 0

0 −2








A(−1, 0) =









4 0

0 1









A(−1, 1) =









2 0

0 −2








A(−1,−1) =









6 0

0 −2








.

b. The linearization is asymptotically stable if all eigenvalues to A lie strictly

in the left complex halfplane. This is satisfied for the stationary points (1, 1)
and (1,−1).

7. We have a second-order system in state space form

ẋ =









−4 −3

1 0







 x +









1

0







u

y =


 0 1



 x
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We want to find a state feedback control law

u = lrr − Lx

such that the closed-loop system will get stationary gain 1 from reference r

to output y and such that the poles are located in −4 (double pole). Deter-

mine lr and L =


 l1 l2



 such that the specification is satisfied. (3 p)

Solution

The desired characteristic polynomial is (s+4)2 = s2+8s+16. With feedback
the characteristic polynomial is det(sI − A+ BL) = s2 + (4+ l1)s+ 3+ l2.

Matching coefficients gives l1 = 4 and l2 = 13.

The static gain is given by C(−A + BL)−1Blr = lr/16 and by setting this
to equal 1 we get lr = 16.

8. Arsenic Poisoning: Arsenic (I) acts by allosteric inhibition of the metabolic
enzyme pyruvate dehydrogenase, PDH (S), which catalyzes the oxidation
of pyruvate to acetyl-CoA (P). Allosteric inhibition means that arsenic may
bind to the enzyme at another site than the normal active site, thereby

forming new complexes that have reduced affinity for the substrate. The

reduced rate of oxidation results in severely disturbed cell metabolism, and

eventually in cell death. Some simplified enzymatic reactions describing

this are:

E + S
k1
−−TS−−
k−1

C1

C1
k2
−T E + P

E + I
k3
−−TS−−
k−3

C2

C1 + I
k1
−−TS−−
k−1

C3

C2 + S
k3
−−TS−−
k−3

C3

where C1 is a complex formed of E and S, C2 is a complex formed of E and

I, and finally C3 is a complex formed by binding of I to C1 or by S to C2.

a. Derive the differential equations for the substrate, enzyme, inhibitor and

complex concentrations.

(2 p)

b. In many developing countries the drinking water quality is low, and with

significant levels of arsenic. A simplified compartment model describing

the kinetics of the arsenic following digestion is given in Fig. 2. Here, In
represents the amount of arsenic in the compartment with subscript n, and

Vn the corresponding volume of distribution of that compartment. Set up

a state-space representation of the system using the arsenic load Imeal as
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I
G I

X

IC

ka ke

kc1 kc2

Gut

Extracellular

Fluid

Intracellular Fluid

V
G V

X

V
C

I
meal

Figur 2 Simplified arsenic kinetics model.

Tabell 2 Parameter values for the arsenic kinetics model

Parameter Value

Vmax 0.05 [s−1]

Ki 1 [µM ]

Ks 10 [mM ]

ka 0.05 [min−1]

kc1 0.03 [min−1]

kc2 0.001 [min−1]

ke 5 ⋅ 10−4 [min−1]

VG 1.2 [L]

VX 11.1 [L]

VC 6.4 [L]

input u and the intracellular concentration of arsenic as output y. Also

provide the transfer function between these variables.

(3 p)

c. Based on the enzymatic reactions above, the production rate V of acetyl-CoA

can be shown (under some assumptions not of relevance here) to follow:

V =
Vmax

1+ [Ic]/Ki
⋅

[S]

Ks + [S]

where the subscript index c refers to the intracellular compartment. Assume

that drinking the contaminated water can be approximated by a constant

supply of 0.02 mg/day (0.27µmol/day). Calculate the maximum possible
steady-state production rate of acetyl-CoA under these conditions given the

set of parameters in Table 2.

(2 p)

Solution

Solution Arsenic Poisoning:
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a. The differential equations become:

ė = −k1es+ (k−1 + k2)c1 − k3ei+ k−3c2

ṡ = −k1es+ k−1c1 − k3c2s+ k−3c3

ċ1 = k1es− (k−1 + k2)c1 − k1ic1 + k−1c3

ċ2 = k3ei− k−3c2 − k3c2s+ k−3c3

ċ3 = k1c1i− k−1c3 + k3c2s− k−3c3

i̇ = −k3ei+ k−3c2 − k1c1i+ k−1c3

b. With x = [IG IX IC]
T , u = Imeal and y = IC/VC,

the state-space representation:

ẋ = Ax + Bu

y = Cx + Du

becomes:

A =







−ka 0 0

ka −(ke + kc1) kc2

0 kc1 −kc2







B =







1

0

0







C =
[

0 0 1/VC

]

D = 0

The transfer function becomes:

G(s) = C(sI − A)−1B + D

Let

Z = (sI − A)−1

Multiplication with C and B gives:

G(s) =
Z31

VC

Here,

Z31 =
kakc1

det(sI − A)
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and

det(sI − A) = (s+ ka)((s + ke + kc1)(s+ kc2) − kc1kc2)

Thus,

G(s) =
kakc1

VC(s+ ka)((s + ke + kc1)(s+ kc2) − kc1kc2)

c. First, determine the static gain:

G(0) =
kc1

VCkekc2

With the given parameter values and constant arsenic load of 0.27⋅10−6/1440
mol/min, the concentration becomes:

[IC]SS = G(0)Imeal = 1.76µM

The maximal production rate of acetyl-CoA when arsenic is present is:

Vmax

1+ [IC]SS/Ki
= 0.018 s−1

Good Luck and Merry Christmas!
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