State Space Realizations (pp 139-150)

G(s), denominator and numerator, poles and zeros
Change of coordinates, diagonal and controllable form
State-feedback

Observers

Feedback from estimated states

¢ 6 6 6 6 ¢ ¢

Integral action by disturbance model
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Lecture 5

@ Controllability — Existence of control signal
@ Which state directions can be controlled ?
@ Observability — Determine state
@ Which state directions can not be seen?

@ Kalman’s decomposition theorem

@ Cancelled dynamics <=> lack of controllability or observability
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Controllability

How should controllability be defined ?

Some (not used) alternatives:

By proper choice of control signal u

@ any state zg can be made an equilibrium
@ any state trajectory z(t) can be obtained
@ any output trajectory y(t) can be obtained

The most fruitful definition has instead turned out to be the following
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Controllability

The state equation
#(t) = Az(t) + Bu(t), x(0)=x9

is called controllable if for any x¢ and T' > 0, there exists u(t) such
that 2(7") = 0 (“Controllable to origin”)

Question: Is this equivalent to the following definition:

“for xo = 0 and any z; and T' > 0, there exists u(t) such that
z(T) = 1" (“Controllable from origin”)

‘The audience is thinking! ‘

, T
Hint: 2(T) = eATazg + [y eAT =) Bu(t)dt



Controllability Gramian

The matrix function

W(T) = /0 M B BT A"t

is called the controllability Gramian.

A main result is the following

Automatic Control LTH, 2014 FRT130 Control Theory, Lecture 5



Controllability Test

The following conditions are equivalent: We will not prove this (see link
on home page).

(i) The system @(t) = Az(t) + Bu(t) is controllable.

(i) rank [B AB A’B ... A" 1B] =n.
(iii)

)

(iv

W (T) is invertible for any T' > 0
Forany A € C we have rank[A — A\ B] =n

The condition (iv) is called the PBH test (Popov-Belevitch-Hautus)

How much rank is lost in A — \I, how much is saved by B?
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Explicit construction of u(t)

If W (T') is invertible, then for any initial state x, the control signal
u(t) = —BTe A" (W(T)) ™ a0

gives z(T") = 0 (easy to check!). Hence the system is controllable.
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Another interpretation of 1V (7")

One can prove (using techniques from next lecture) that the minimal
(squared) control energy, defined by ||u||? := fOT |u|?dt, needed to
move from z(0) = z to z(T') = 0 equals

x5 (W(T) ™ o

Gives nice understanding of which state directions are expensive to
control
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Which trailer is controllable?
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Observability

The system
d
d—j = Az, z(0) =z
y=Cx

is called observable if z( can be uniquely determined from yq 7 (for
any T > 0)
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Which trailer is observable?

02
P
01
u

1

Which trailer is observable if y = 017 If y = 05?
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Observability Criteria

C

CA
(i) rank ) =n

CAn—l

(i) Forany A € C we have rank [A EM] =n

There is also a test involving a similar W matrix as before (called
observability Gramian)
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Controllability — state transformation

Theorem:
If the system is noncontrollable, say rank(C) = g < n, then there is a
state transformation x = V z so that in the new state coordinates
12111 12112 By
AV =V ~ and B=V ,
[ 0 Ay 0

(A11, By) controllable subsystem, ¢ X ¢

Automatic Control LTH, 2014 FRT130 Control Theory, Lecture 5



Observability — state transformation

Theorem:
If the system is non-observable, say rank(Q) = ¢ < n, then there is a
state transformation so that in the new state coordinates

A1 0

AV =V <
[A21 Ago

] ochCV = (&1 0],

(A1, C1) observable subsystem, g x ¢
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Kalman’s decomposition theorem

With a state transformation that splits the controllable subspace (and
its complement) into nonobservable subspace and complement we get
the system on a nice form

dr _ |Azn Ax Axp Ay o] Ba |,
dt 0 0 A3 0 0
0 0 Ags Ay 0

y:(Cl 0 CQ O]$

G(S) = 01(81 — All)_lBl

lllustrates what subparts of the system that influences the input-output
behavior
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Kalman’s decomposition theorem

The audience if thinking: What blocks in this figure corresponds to
parts 1,2,3,4 on the previous slide?
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Kalman’s decomposition theorem

If no common eigenvalues between any two blocks on the diagonal,
then corresponding off-diagonal blocks can be eliminated by changed
choice of the complementing spaces. Simplifies picture further
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What does the decomposition theorem say when y = 62? What block
is then missing?
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Trailer 4 after coordinate change

0, — 1 f]0 o950 0y 1
5 | =12 -2 0 65 |+ |0|u
0, — 65 0 0 —1||6;—6, 0
02
y:[1 0 0} 05
01 — 0

controllable and observable subsystem: 65
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Zeros and state feedback

Remember: State-feedback does not change zeros.
Choose state feedback L that gives a pole in .

A now becomes non-observable

[A—BL—)\I]
:1?020

If the mode xgpe

C

then actually \ was a zero to the system:
A—)X B To| 0
C 0 U -
Corresponds to cancellation of the factor s — A in

G(s)=C(sI — A+ BL)"'BI,
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Bonus: Series Connection SISO

Given two systems n;(s)/d;(s) = ¢;(sI — A;)~tb;, i=1,2

Then the series connection —Z;gzg le((i)) is

@ uncontrollable <= there is A so n1(A) = da(\) =0
@ unobservable <= there is z so na(A) = d1(A) =0

Proof:
M — Ay 0 by

<
Controllable, check when rank Ex—m /[ = n
M — Ay 0
Observable, check when rank —bye; AN — Ao <n
0 Co
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Cancellation in series connections

Example
s+3 s—1

. U
s=1 5120
Loss of controllability of an unstable mode. Bad.

Y(s) =

Example
-1
Y(s):s S+3U(s)

s+ 2 -
Loss of observability of an unstable mode. Also bad.

Automatic Control LTH, 2014 FRT130 Control Theory, Lecture 5



@ Controllability - criteria

@ Observability - criteria

@ Kalman’s decomposition

@ Cancelled dynamics <=> lack of controllability or observability
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