
Last week

Argument principle

General Nyquist criterion:

P UNSTABLE
CLOSED − P UNSTABLE

OPEN = CW encirclements of -1

Bode’s relations between gain and phase
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Lecture 3

Design Tradeoffs

Sensitivity Conservation Law

Linearization around trajectory

-Example: Stabilization of inverted pendulum
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Architecture with Two Degrees of Freedom
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Ingredients:

Controller: feedback C , feedforward F

Load disturbance d : Drives the system from desired state

Process: transfer function P

Measurement noise n : Corrupts information about x

Process variable x should follow reference r
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Typical Requirements

A controller should

A: Reduce effects of load disturbances

B: Not inject too much measurement noise into the system

C: Make the closed loop insensitive to variations in the process

D: Make output follow command signals well

Systems with two degrees of freedom (2DOF)

Design feedback C for A, B and C

Then design feed-forward F to handle D

Systems with error feedback (F = 1) do not allow this separation of
responses to command signal and disturbances.
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The Gangs of Four and Seven
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Observations

A system based on error feedback is characterized by four

transfer functions (The Gang of Four GoF)

PC

1 + PC

P

1 + PC

C

1 + PC

1

1 + PC

The system with a controller having two degrees of freedom is
characterized by seven transfer function (The Gang of Seven
GoS)

PCF

1 + PC

CF

1 + PC

F

1 + PC

To fully understand a system it is necessary to look at all transfer
functions

It may be strongly misleading to only show properties of a few
systems for example the response of the output to command
signals, a common omission in literature.
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Gain Curves of the Gang of Four
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Gain curves of the Gang of Four for a heat conduction process with I (dash-dotted), PI
(dashed) and PID (full) controllers.

One plot like this gives a good overview of performance and robustness!
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One Way to Show All Responses
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Robustness, small process variations

Effect of small process changes on T = PC/(1 + PC)

dT

dP
=

C

(1 + PC)2
=

ST

P
,

dT

T
= S

dP

P

Robustness: Small relative impact of relative process variations
when S is small

How much can the process be changed without making the closed
loop unstable?
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Robustness against large process variations

1 + P C
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Closed loop stability with P (s) + ∆P (s) is guaranteed if nominal loop
is stable and

|C∆P | < |1 + PC| ⇐⇒
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Robustness: Large variations permitted when T is small

Note S + T = 1.
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Lecture 3

Design Tradeoffs

Sensitivity Conservation Law

Linearization around trajectory

-Example: Stabilization of inverted pendulum
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Effect of Feedback on Disturbances

v

c p

C P

−1

Σ Σ Σ
r = 0 e u

d

x

n

y

Output without control: Yol = N + PD

Output with feedback control: Ycl = 1
1+P C

(

N + PD
)

= SYol

The sensitivity function S = 1/(1 + PC) tells how feedback
influences the effect of disturbances: Disturbances with frequencies
such that |S(iω)| < 1 are reduced by feedback, disturbances with
frequencies such that |S(iω)| > 1 are amplified by feedback.
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Assessment of Disturbance Reduction

We have

Ycl = SYol(t), S(s) =
1

1 + P (s)C(s)

Feedback attenuates disturbances when |S(iω)| < 1

Feedback amplifies disturbances when |S(iω)| > 1

The sensitivity crossover frequency ωsc (|S(iωsc)| = 1) is an
important parameter, (there may be many values)
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The Water Bed Effect - Bode’s Integral

0 1 2 3
−3

−2

−1

0

1

Frequency ω [rad/s] (linear scale)

lo
g

|S
(i

ω
)|

10

0.1

1.0

Serious Design s.g

L
o
g
 M

ag
n
it

u
d
e

Frequency
0.0 0.5 1.0 1.5 2.0

If the closed loop is stable and P (s)C(s) has relative degree ≥ 2:

∫

∞

0
log |S(iω)|dω = π

∑

pk∈RHP

Re pk

The sensitivity can be decreased at one frequency at the cost of
increasing it at another frequency. Feedback design is a trade-off!.
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Linearization around a trajectory

Let (x0(t), u0(t)) be a solution to ẋ = f(x, u) and consider nearby
solution (x(t), u(t)) = (x0(t) + x̃(t), u0(t) + ũ(t)):

ẋ(t) = f(x0(t) + x̃(t), u0(t) + ũ(t))

= f(x0(t), u0(t)) +
∂f

∂x
(x0(t), u0(t))x̃(t)

+
∂f

∂u
(x0(t), u0(t))ũ(t) + O(‖x̃, ũ‖2)

(x0(t), u0(t))

x̃(t)

(x0(t) + x̃(t), u0(t) + ũ(t))
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Linearisation, continued

We hence have for small (x̃, ũ), approximately

˙̃x(t) = A(t)x̃(t) + B(t)ũ(t)

where (if dim x = 2, dim u = 1)

A(t) =
∂f

∂x
(x0(t), u0(t)) =

[

∂f1

∂x1

∂f1

∂x2

∂f2

∂x1

∂f2

∂x2

]

∣

∣

∣

(x0(t),u0(t))

B(t) =
∂f

∂u
(x0(t), u0(t)) =

[

f1

u
f2

u

]

∣

∣

∣

(x0(t),u0(t))

Note that A(t) and B(t) are time varying! If we linearise around an
equilibrium point (x0(t), u0(t)) ≡ (x0, u0) they become time-invariant
A and B.
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Linearisation, continued

Linearisation of output equation

y(t) = h(x(t), u(t))

along the nominal outpout y0(t) = h(x0(t), u0(t)) gives

ỹ(t) = C(t)x̃(t) + D(t)ũ(t)

where ỹ(t) = y(t) − y0(t) och (om dim y = dim x = 2, dim u = 1)

C(t) =
∂h

∂x
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Example: Rocket

h(t)

m(t)

ḣ(t) = v(t)

v̇(t) = −g + veu(t)
m(t)

ṁ(t) = −u(t)

Let u0(t) ≡ u0 > 0; x0(t) =







h0(t)
v0(t)
m0(t)






; m0(t) = m0 − u0t.

Linearisation: ˙̃x(t) =







0 1 0
0 0 −veu0
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0 0 0
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0
ve

m0(t)
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
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
ũ(t)
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Linear time varying systems — Warning!

The eigenvalues λ(t) of A(t) can not be used to determine stability:

A(t) =

(

−1 + α cos2 t 1 − α sin t cos t
−1 − α sin t cos t −1 + α sin2 t

)

, α > 0

Eigenvalues are constant

λ(t) = λ =
α − 2 ±

√
α2 − 4

2

with negativ real part for 0 < α < 2. However, solution to ẋ = A(t)x is

x(t) =

(

e(α−1)t cos t e−t sin t

−e(α−1)t sin t e−t cos t

)

x(0),

which is unlimited when α > 1.
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Example — Sticksaw

Why can we stabilize an inverted pendulum by just applying vertical
oscillations (note, no feedback)?

Watch video www.youtube.com/watch?v=rwGAzy0noU0
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Stick saw

Dynamics for inverted pendulum with sinusoidal movement

{

ẋ1 = x2

ẋ2 = ℓ−1
(

g + aω2 sin ωt
)

sin x1

Periodic trajectory x0(t), u0(t) with period T = 2π/ω.

Linearisation along trajectory gives ˙̃x(t) = A(t)x̃(t) where

A(t) =
∂f

∂x
=

[

0 1
aω2 sin ωt cos x1 0

]
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Stability for pendulum on stick saw

There is no analytical solution to ẋ = A(t)x (and we can not used the
eigenvalues).

Analysis (see course in nonlinear systems) of ẋ = A(t)x shows that
the system is stable when ω is sufficiently large.

For the case a = 1cm, ℓ = 17cm, stability when ω > 182
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Stick saw —Simulation

Simulation gives good aggreement with mathematical analysis based
on linearisation
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Today

Design Tradeoffs

Sensitivity Conservation Law

Linearization around trajectory

-Example: Stabilization of inverted pendulum

Thanks to Karl Johan Åström
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