Last week

@ Argument principle

@ General Nyquist criterion:
PyGoEete — PSNSMBE = CW encirclements of -1

@ Bode’s relations between gain and phase
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@ Design Tradeoffs
@ Sensitivity Conservation Law

@ Linearization around trajectory

-Example: Stabilization of inverted pendulum
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Architecture with Two Degrees of Freedom

Controller Process
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Ingredients:

@ Controller: feedback C, feedforward F

@ Load disturbance d : Drives the system from desired state
@ Process: transfer function P

@ Measurement noise n : Corrupts information about x

@ Process variable x should follow reference r
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Typical Requirements

A controller should

A: Reduce effects of load disturbances

B: Not inject too much measurement noise into the system

C: Make the closed loop insensitive to variations in the process
D: Make output follow command signals well

Systems with two degrees of freedom (2DOF)

@ Design feedback C for A, B and C
@ Then design feed-forward F' to handle D

Systems with error feedback (' = 1) do not allow this separation of
responses to command signal and disturbances.
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The Gangs of Four and Seven
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@ A system based on error feedback is characterized by four
transfer functions (The Gang of Four GoF)

PC P C 1
1+ PC 14+ PC 1+ PC 1+ PC

@ The system with a controller having two degrees of freedom is
characterized by seven transfer function (The Gang of Seven

GoS)
PCF CF F

1+ PC 1+ PC 1+ PC
@ To fully understand a system it is necessary to look at all transfer
functions

@ It may be strongly misleading to only show properties of a few
systems for example the response of the output to command
signals, a common omission in literature.

Automatic Control LTH, 2016 FRT130 Control Theory, Lecture 3



Gain Curves of the Gang of Four

Gain curves of the Gang of Four for a heat conduction process with | (dash-dotted), PI
(dashed) and PID (full) controllers.

One plot like this gives a good overview of performance and robustness!
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One Way to Show All Responses
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Robustness, small process variations

Effect of small process changes on 7' = PC/(1 + PC)

f _ _C___ ST  dT _ .dP
dP  (1+PC)? P’ T\ "2

Robustness: Small relative impact of relative process variations
when S is small

How much can the process be changed without making the closed
loop unstable?
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Robustness against large process variations

A ImPC

RePC

Closed loop stability with P(s) + AP(s) is guaranteed if nominal loop

is stable and
AP 1+ PC 1
CAP| < |1+ PC = | I o ==
ICAP| < |1+ PC]| ]P]PC]m
Robustness: Large variations permitted when 7" is small

Note S + 1 = 1.
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@ Design Tradeoffs
@ Sensitivity Conservation Law

@ Linearization around trajectory

-Example: Stabilization of inverted pendulum
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Effect of Feedback on Disturbances

Output without control: Y,; = N + PD
Output with feedback control: Y, = 1+%(N + PD) = S8Yy

The sensitivity function S = 1/(1 + PC) tells how feedback
influences the effect of disturbances: Disturbances with frequencies
such that |S(iw)| < 1 are reduced by feedback, disturbances with
frequencies such that |.S(iw)| > 1 are amplified by feedback.
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Assessment of Disturbance Reduction

We have 1

cl Ol( ) (8) 1+P(8)C(S)
@ Feedback attenuates disturbances when |S(iw)| < 1
@ Feedback amplifies disturbances when |S(iw)| > 1

@ The sensitivity crossover frequency w. (|S(iwse)| = 1) is an
important parameter, (there may be many values)
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The Water Bed Effect - Bode’s Integral

Serious Design

log |5 (iw)|
b o b

Log Magnitude
s

_3 1 1
0 1 2 3 0.1
Frequency w [rad/s] (linear scale)

1.0
Frequency
If the closed loop is stable and P(s)C(s) has relative degree > 2:

/ log |S(iw)|dw = 7 Z Re pi
0 pLERHP

The sensitivity can be decreased at one frequency at the cost of
increasing it at another frequency. Feedback design is a trade-off!.
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@ Design Tradeoffs
@ Sensitivity Conservation Law

@ Linearization around trajectory

-Example: Stabilization of inverted pendulum
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Linearization around a trajectory

Let (zo(%),uo(t)) be a solution to & = f(x, ) and consider nearby
solution (z(t), u(t)) = (zo(t) + Z(t), uo(t) + u(t)):

&(t) = f(xo(t) + Z(t), uo(t) + u(t))

= flxo(t), uo(t)) + %(a?o(t),m(t))i(t)
0

.y a—i(mo(t),uo(t))ﬂ(t) +0(|z, all)
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Linearisation, continued

We hence have for small (Z, @), approximately
z(t) = A(t)Z(t) + B(t)a(t)

where (if dim x = 2, dimu = 1)

af % %
A t) = — t 5 t = ¥ 7
( ) B (aj‘o( ) UO( )) [g_z? g_£§‘| (zo(t),uo0(t))
af i
B(t) = 5 (ao(t), uo(t)) = | £
(8) = 5 (20(t), uo(t)) lf;] (z0(t);u0 ()

Note that A(t) and B(t) are time varying! If we linearise around an
equilibrium point (xo(t), uo(t)) = (z0, up) they become time-invariant
Aand B.
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Linearisation, continued

Linearisation of output equation

along the nominal outpout yo(t) = h(zo(t),up(t)) gives
y(t) = C(8)(t) + D(t)a(t)

where g(t) = y(t) — yo(t) och (om dim y = dim z = 2, dim u = 1)

o _mom

Ct) = — =B3R5k

() 81‘ (Io,uo) [g_;? g_];;] (IO(t)vuO(t))
oh o

D) = — =G

() 8u (mo,uo) [g_qfﬁ‘| (ﬂﬂo(t),uo(t))
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Example: Rocket

h(t)
ho(t)
Letup(t) = up > 0; zo(t) = | wol(t) |; mo(t) = mo — uot.
mo(t)
0 1 0 0
Linearisation: z(t) = | 0 0 =88 | 2(t) + | mey | @lt)
0 0 0 =1l
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Linear time varying systems — Warning!

The eigenvalues \(t) of A(t) can not be used to determine stability:

—1+acos®’t 1 —asintcost a>0
—1—asintcost —1+4 asin®t /’

Eigenvalues are constant

oa—2+vVa2—4
2

At) =)A=
with negativ real part for 0 < « < 2. However, solution to & = A(t)x is

(a—1)t . —t o
x(t) / ( e cost e ‘sint )x(O),

—ele=Dtgint e~tcost

which is unlimited when o > 1.
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Example — Sticksaw

Why can we stabilize an inverted pendulum by just applying vertical
oscillations (note, no feedback)?

Watch video www . youtube. com/watch?v=rwGAzyOnoU0
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Dynamics for inverted pendulum with sinusoidal movement

.fl = XI9
io =071 (g + aw? sinwt) sin

Periodic trajectory zo(t), uo(t) with period 7" = 27 /w.
Linearisation along trajectory gives 2 (t) = A(t)&(t) where

of 0 1
A oxr [an sinwtcosz; 0
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Stability for pendulum on stick saw

There is no analytical solution to # = A(t)x (and we can not used the
eigenvalues).

Analysis (see course in nonlinear systems) of & = A(¢)x shows that
the system is stable when w is sufficiently large.

For the case a = 1cm, £ = 17cm, stability when w > 182
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Stick saw —Simulation

Simulation gives good aggreement with mathematical analysis based
on linearisation
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@ Design Tradeoffs
@ Sensitivity Conservation Law

@ Linearization around trajectory
-Example: Stabilization of inverted pendulum

Thanks to Karl Johan Astrém
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