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Laplace transform - single vs double sided

Initial and Final Value Theorem
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Initial and Final Value Theorem

Initial Value Theorem Suppose that f is causal and that the Laplace

transform F (s) is rational and strictly proper. Then

lim
t→+0

f(t) = lim
s→+∞

sF (s)

Final Value Theorem. Suppose that f is causal with rational Laplace

transform F (s). If all poles of sF (s) have negativ real part, then

lim
t→+∞

f(t) = lim
s→+0

sF (s)
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(Cauchy’s) Argument Principle

Nyquist criterion

Example: Trailer

Example: Feedback with time delay

Bode’s relations between gain and phase
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Argument variation

Let Γ be a simple closed curve in the complex plane surrounding the

domain D.

The change in the argument for the complex function F (s) when s
follows the boundary to D in a counter-clockwise (CCW) direction, is

called the argument variation of F along Γ and is denoted ∆Γ arg F :

∆Γ arg F :=

∫

Γ

(
d

ds
arg F (s)

)

ds
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(Cauchy’s) argument principle

Suppose that F (s) is analytic in a neighborhood of D except for a

finite number of poles in D. Then

1

2π
∆Γ arg F = NF − PF

where NF is the number of zeros and PF the number of poles of F
in D.
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Proof of the Argument Principle

The argument function is the imaginary part of the complex logarithm,

so

∆Γ arg F =

∫

Γ

(
d

ds
arg F (s)

)

ds

= Im

∫

Γ

(
d

ds
log F (s)

)

ds = Im

∫

Γ

F ′(s)

F (s)
ds

F ′/F is singular exactly in the poles and zeros of F .
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Proof cont’d

F (s) =
(s − z1) · · · (s − zNF

)

(s − p1) · · · (s − pPF
)
G(s)

where G has no poles and zeros in D. Then

log F (s) =
NF∑

j=1

log(s − zj) −
PF∑

j=1

log(s − pj) + log G(s)

Derivation and integration gives

1

2π

∫

Γ

F ′(s)

F (s)
ds =

1

2π
Im

∫

Γ





NF∑

j=1

1

s − zj

−

PF∑

j=1

1

s − pj

+
G′(s)

G(s)



 ds = NF − PF
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Nyquist criterion

Example: Trailer

Exemple: Feedback with time delay

Bode’s relations between gain and phase
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Nyquist Criterion

Regler AK: If L(s) is stable, then the closed loop system

[1 + L(s)]−1 is also stable if and only if the Nyquist curve L(iω) does

not encircle −1.

More general: The difference of the number of unstable poles to

[1 + L(s)]−1 and the number of unstable poles of L(s) equals the

number of clockwise encirclements of the point −1.
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Proof of the Nyquist criterion

Apply the argument principle on

F (s) = 1 + L(s)

where D is the inner of a half circle with center in the origin, and

radius large enough to contain all poles and zeros in the RHPL. Then

PF = number of unstable poles to 1 + L(s) = Popen

NF = number of unstable poles to [1 + L(s)]−1 = Pclosed
1

2π
∆Γ arg F = number of CCW encirclements of −1 by F (s)

when s moves around boundary of D CCW

= nr of clockwise encircl. of -1 of Nyquist curve L(iω)

Pclosed−Popen = nr of clockwise encirclements around -1 of L(iω)
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Example: Trailer

u

θ1

y = θ2

When trailer moves forward with speed v = 1:

Y (s) =
1

(s + 2)(s + 1)
︸ ︷︷ ︸

G(s)

U(s)
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Example: Trailer moving forward with P-control

P-control: U(s) = −kY (s). Gives L = kG.

s = tf(’s’)

G = 1/((s+2)*(s+1))

nyquist(G)
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Stable if L(iω) = k 1
(iω+2)(iω+1) does not encircle −1.

True for all k > 0 (and some k < 0)

Automatic Control LTH, 2014 FRT130 Control Theory, Lecture 2



Example: Trailer moving backwards with P-control

Now G(s) = 1
(s−2)(s−1)

G = 1/((s-2)*(s-1))

nyquist(G)
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When does L(iω) = k 1
(iω−2)(iω−1) encircle −1 two times

counter-clockwise?

Never. So P-control can not be used.
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Example: Trailer moving backwards with PD-control

Lets try this PD-controller: U(s) = −k(1 + s)Y (s).
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Stable if L(iω) = k 1+iω
(iω−2)(iω−1) encircles −1 two times

counter-clockwise.

True when k > 3. PD-control works
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Example: System with time delay

Is the system

ẏ(t) = y(t) − 2y(t − 0.5)

stable?

This can be viewed as a feedback system

ẏ(t) = y(t) + u(t)

u(t) = −2y(t − 0.5)

Can use Nyquist criterion with L = P (s)C(s) = 2e−0.5s

s−1
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Example: System with time delay

ẏ(t) = y(t) − 2y(t − 0.5)
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Stable, since L(iω) = 2e−i0.5ω

iω−1 encircles −1 one time counter

clock-wise.
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Design tradeoffs

A control system should typically have high gain |P (iω)C(iω)| at low

frequencies to reduce impact of disturbances and to follow the

reference signal r, but low gain at high frequencies to avoid stability

problems and the effect of measurement noise
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How fast can one go from high gain to low gain for different

frequencies?
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Bode’s relations — Approximative version

If G(s) is stable and has no zeros in the RHPL and no time delay then

arg G(iω0) ≈
π

2

d log |G(iω)|

d log ω

∣
∣
∣
∣
ω=ω0

If there are zeros in the RHPL or time delay the phase will be smaller

Conclusion: The slope of the amplitude determines the phase.

Phase -180 degree corresponds to slope -2 (with log-log scales)

At the cut off frequency (where the amplitude equals one) the slope

needs to be > −2 (around -1.5 is recommended). Otherwise the

Nyquist curve will go the wrong way around -1

Can not reduce loop gain too fast.
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Bode’s relation(s) — Exact version

If G(s) is stable and minimum phase (no zeros in RHPL or time

delays) then

arg G(iω0) =
1

π

∫
∞

0

d log |G(iω)|

d log ω
log

∣
∣
∣
ω + ω0

ω − ω0

∣
∣
∣

︸ ︷︷ ︸

weight function

d log ω
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Hint to problem 1c

If one first determines Y (s) one can then have use of the fact that for

any complex number v we have the identity

(sI−A)−1(s−v)−1 = −(sI−A)−1(vI−A)−1+(vI−A)−1(s−v)−1.

(If you use this identity, you should prove it!) Apply with v = iω and

v = −iω, combine the results and do inverse laplace.

Also remember that Im(z) = (z − z̄)/(2i) and sin ωt = Im(eiωt) and

L(etA) = (sI − A)−1
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