
Solutions to Exam in Systems Engineering/Process Control 2015-06-05

1 a. y1 and y2 are used for feedback control in a cascaded structure. The master

level controller (LIC) calculates the flow setpoint for the slave flow con-
troller (FIC). y3 measures the outflow, which can be seen as a disturbance.
The level controller uses feedforward from this signal to compensate for the

disturbance.

b. If y2 is removed, there will be no feedback from the tank level, which is

the quantity we are trying to control. Hence, y2 should not be removed. Re-

moving y1 (and FIC) would disable the inner loop of the cascade controller,
and removing y3 would disable the feedforward. Both of these actions would

decrease the control performance but still leave a working system.

2 a. In stationarity we have ẋ = 0, which yields 0 = −8(x02)3 +
√
1 Q x02 = 0.5.

Further, x01 = 0. Finally, we have y0 = (x02)2 = 0.25. Let

f1(x1, x2,u) = −8x32 +
√
u

f2(x1, x2,u) = x1
�(x1, x2,u) = x22

The partial derivatives are

� f1
�x1

= 0 � f1
�x2

= −24x22
� f1
�u =

1

2
√
u

� f2
�x1

= 1 � f2
�x2

= 0 � f2
�u = 0

��
�x1

= 0 ��
�x2

= 2x2
��
�u = 0

Inserting the stationary values and introducing the variables ∆x = x −
x0,∆u = u− u0 and ∆y= y− y0, we get the linearized system

∆̇x =
(

0 −6
1 0

)

∆x +
(

0.5

0

)

∆u

∆y= ( 0 1 ) ∆x

b. The transfer function is calculated as

G(s) = C(sI − A)−1B = ( 0 1 )
(

s 6

−1 s

)−1(
0.5

0

)

= 0.5

s2 + 6

The two poles are located in ±
√
6 i. Hence, the system is marginally stable

(i.e., stable but not asymptotically stable).

3. Largerω 0 gives faster step response, and poles further away from the origin.
Larger ζ gives a more damped step response, and smaller angle between
the poles and the negative real axis (see page 45 in the course book). Hence,
the correct matching is 1–D, 2–C, 3–B, 4–A.
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4 a. Laplace transformation of the equation yields

3sY(s) + Y(s) − e−0.1sU(s) = 0

Solve for Y(s) to obtain

Y(s) = e−0.1s

3s+ 1U(s)

Now, the transfer function can be identified as

G(s) = e
−0.1s

3s+ 1

• The system is asymptotically stable, so the static gain is given by
G(0) = 1.

• The time constant is identified as T = 3.
• The deadtime is identified as L = 0.1.

b. We have U(s) = 1, and hence Y(s) = e−0.1s
3s+1 . Inverse Laplace transformation

gives

y(t) =







0, t < 0.1
1

3
e−(t−0.1)/3, t ≥ 0.1

5 a. The gain is calculated as

pG(iω )p =
∣
∣K (1+ iωTd)

∣
∣ = K

√

1+ (ωTd)2

b. Very large input frequency gives a very large gain, and the controller is

very sensitive to high-frequency noise. This can be coped with by using the

following approximation of the derivative term, where the derivative gain

is limited by N:

D(s) = sKTd

1+ sKTd/N

6 a. This is a PI-controller, since it is in the form

G1(s) =K
(

1+ 1

sTi

)

The s in the denominator corresponds to time integration, and forms the

integral part together with the control parameters.

b. Setting l1 = l2 = n = 0, we obtain

Y(s) = G2(s)G1(s)(R(s) − Y(s))

Y(s) = G2(s)G1(s)
1+ G2(s)G1(s)
︸ ︷︷ ︸

=Gyr(s)

R(s)
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Inserting the given transfer functions, we calculate

Gyr(s) =
−1.5(s+ 0.2)(s− 2)
(s+ 0.2)(s+ 3) = −1.5(s− 2)

s+ 3
The zero is hence located in +2, and the pole is located in −3.
(The process pole in −0.2 is cancelled by the controller zero in the same
location—this is typical for Lambda tuning.)

c. Since the system is asymptotically stable (pole strictly in left half-plane),
the static gain can be found as G(0) = 1. This implies that there will be no
static error, since we will have y(t) = r(t) in stationarity (again assuming
l1 = l2 = n = 0).

7 a. The phase-margin is 90 deg as seen by the intersection of the unit-circle

and the Nyquist curve. The Nyquist curve intersects the negative real axis

at about −0.2 (the actual value is −1
6
), which gives an amplitude margin

of 5 (respectively 6).
The static gain is given by G(0), which is about 1.6 (the actual value is 5

3
).

b. In the Laplace domain, we have

E(s) = G(s)(D(s) − KE(s)) \ E(s) = G(s)
1+ KG(s)D(s)

With D(s) = 1
s
, we have

e(∞) = lim
s→0
sE(s) = G(0)

1+ KG(0) =
5/3

1+ 5K/3

The stationary error decreases with larger K , and for stability we need

K < 6. Hence, the smallest stationary error that is possible is 0.15.

8. One solution is shown in Figure 1. More elaborate solutions are also possi-

ble.

9. For each row in Λ (each corresponding to an output), one should find a
column (each corresponding to an input) with a non-negative element close
to one. In row 1, the first element is 0.931. In row 2, the fourth element is

1.154. In row 3, the only positive element is the second one, 3.314. In row 4,

the third element is 0.90. A suitable pairing is hence y1–u1, y2–u4, y3–u2,

y4–u3.

10. The control signal vector is given by

U(s) = G1(s)(R(s) − G2(s)U(s))

Solving for U(s) we obtain

(I + G1(s)G2(s))U(s) = G1(s)R(s)
U(s) = (I + G1(s)G2(s))−1G1(s)R(s)

The multivariable transfer function from r to u is hence given by

Gur(s) = (I + G1(s)G2(s))−1G1(s)
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Figure 1 GRAFCET in Problem 8
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