

Tentamen i Systemteknik/Processreglering

2014-08-28

Poängberäkning och betygssättning

Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar 7 uppgifter om totalt 20 poäng (Systemteknik) eller 8 uppgifter om totalt 25 poäng (Processreglering). Poängberäkningen finns markerad vid varje uppgift. Preliminära betygsgränser:

Systemteknik:	Processreglering:
Betyg 3: 10 poäng	Betyg 3: 12 poäng
4: 14 poäng	4: 17 poäng
5: 17 poäng	5: 21 poäng

Tillåtna hjälpmedel

Matematiska tabeller (TEFYMA eller motsvarande), formelsamling i reglerteknik samt icke förprogrammerade räknare.

Tentamensresultat

1. The population dynamics of wolves (V) and reindeer (R) in a small region in eastern Siberia can be expressed as

$$\dot{V} = 0.5V + 0.1R - 0.1V^{2}$$
$$\dot{R} = 0.5R - 4V - \frac{2}{300}RV$$

a. Find all stationary points for the system.

- (1.5 p)
- **b.** Linearize the system around the stationary point which gives the highest value for R. Comment on the stability properties of the linearized system. (3 p)
- 2. Does the transfer function

$$G(s) = \frac{s+2}{s^3 + 3s^2 + 4s + 10}$$

have all its poles strictly in the left half-plane?

(1 p)

3. Match the transfer functions G_1 – G_4 with four of the step responses A–F in Figure 1. The magnitude of the step is 1 and the step is applied at time t = 0. Don not forget to motivate your answer. (2 p)

$$G_1(s) = \frac{0.7}{s^2 + 1}$$
 $G_2(s) = \frac{1}{s + 1}$
 $G_3(s) = \frac{s}{s + 1}$ $G_4(s) = \frac{e^{-s}}{s^2 + s + 1}$

Figur 1 The step responses A–F for Problem 3.

4. Consider the system with transfer function

$$G(s) = \frac{1}{(s-2)(s+4)}$$

The system is to be controlled using a P regulator with gain K. Find the closed-loop transfer function and the lowest value for K for which the closed-loop system is stable. (1.5 p)

5. Your colleague is complaining about poor performance in a control system she designed some time ago. She is showing you the output of the process and is kindly asking for your assistance in the matter.

Figur 2 The process output of a poorly controlled system.

- **a.** As you can see from the process output in Figure 5, the output y does not follow the reference r very well, especially at time $t \in [20,30]$. What kind of controller do you think your colleague has implemented and what is making this controller perform poorly? Motivate your answer. (2 p)
- **b.** Suggest a strategy to mitigate the severe control issues while keeping the general structure of the controller. (2 p)
- **6.** A process is described by the differential equation

$$\dot{y} + y - u = 0 \tag{1}$$

where u is the control signal and y is the measured output.

- **a.** Find the transfer function $G_P(s)$ from U(s) to Y(s). Is the process stable? (2 p)
- **b.** Design a feedback PI-controller $G_R(s)$ such that the closed-loop poles are placed in $-2 \pm i$.
- **c.** If a reference signal $r(t) = 2\sin t$ is fed to the controller, what will the output signal be (after initial transients have died out)? (2 p)
- 7. Consider the problem whose Bode diagram is shown in Figure 3. Find the system's gain and phase margins. (1 p)

Figur 3 Bode diagram for the system in Problem 7.

8. Only for Process Control: Consider the multivariable system

$$G(s) = \begin{pmatrix} \frac{2a}{(s+2)(50s+1)} & \frac{e^{-s}}{(10s+1)(2s+1)} \\ \frac{3}{(10s+1)(2s+1)} & \frac{2}{(2s+1)^2} \end{pmatrix}.$$
 (2)

The system should be controlled using two PID controllers

- **a.** Calculate the relative gain array, RGA, for the system. (1 p)
- **b.** How should the inputs and outputs be paired if a = 0? Comment upon the interaction. (0.5 p)
- **c.** How should the inputs and outputs be paired if a = 3? Comment upon the interaction. (0.5 p)
- **d.** Let a=3. Determine a decoupling matrix that decouples the system dynamics in stationarity and gives the corresponding decoupled system static gains of one. Is the decoupler realizable? (1 p)

9. Only for Process Control: Consider the system

$$\dot{y} + 2y = 3u,$$

where y(t) is the output and u(t) is the input.

- **a.** Discretize the system using the forward (Euler) approximation and the sampling interval h. (1 p)
- **b.** Discretize the system using the backward approximation and the sampling interval h. (1 p)