
Peformance and profiling in Julia

Fredrik Bagge Carlson1

1Dept. Automatic Control, Lund Institute of Technology
Lund University

Fredrik Bagge Carlson Performance

Outline

1 Write code with performance in mind
2 Profile your code
3 Optimize your code

Step one, put your code in functions

A global variable might have its value, and therefore its type, change at
any point. This makes it difficult for the compiler to optimize code using
global variables.

⇓

Any code that is performance critical or being benchmarked should be
inside a function.

Fredrik Bagge Carlson Performance

Avoid global variables (unless declared const)

PRINT = false
function foo()

for i = 1:1_000_000_000
if PRINT
print(i)

end
end

end
@time foo()
0.795711 seconds

const PRINT = false
function foo()

for i = 1:1_000_000_000
if PRINT
print(i)

end
end

end
@time foo()
0.000002 seconds

PRINT is false in both cases, but the compiler can rely on it in the
second case

Fredrik Bagge Carlson Performance

Type declarations, type stability

Useful as assertion for debugging, but does not make the code faster.

Exception: Declare specific types for fields of composite types

type Foo
field

end

type Foo
field::Type

end

It is in general bad for performance to change the type of a variable,
type annotation will prevent this.

Fredrik Bagge Carlson Performance

Type stability

An example of type instability

function foo()
a = 1 # Int64
for i = 1:100_000_000

a += i/(i+1)
end
a

end
@time foo()
2.167254 seconds
(200.00 M allocations:
2.980 GB, 22.27% gc time)

function bar()
a = 1.0 # Float64
for i = 1:100_000_000

a += i/(i+1)
end
a

end
@time bar()
0.715188 seconds
(5 allocations: 176 bytes)

Fredrik Bagge Carlson Performance

Julia uses column major convention

function foo()
x = Array(Float64,

(10_000,10_000))
for i = 1:size(x,1)

for j = 1:size(x,2)
x[i,j] = i*j

end
end

end
@time foo()

3.448774 seconds

function bar()
x = Array(Float64,

(10_000,10_000))
for j = 1:size(x,2)

for i = 1:size(x,1)
x[i,j] = i*j

end
end

end
@time bar()
0.300085 seconds

Think about this when you are choosing how to store your data!

Fredrik Bagge Carlson Performance

Avoid unnecessary memory allocation

Julia passes arrays as references. Use this to re-use already allocated
memory.

function food()
A = Array(Int64,(100,100))
for i = eachindex(A)

A[i] = i
end
return A

end

function eat()
for i = 1:10_000

chicken = food()
sum(chicken)

end
end
@time eat()

0.297590 seconds
(30.00 k allocations: 763.855 MB, 33.59% gc time)

New plate every time, lots of time to
clean! (garbage collect)

function beer!(A)
for i = eachindex(A)

A[i] = i
end

end

function drink()
weiss = Array(Int64,(100,100))
for i = 1:10_000

beer!(weiss)
sum(weiss)

end
end

@time drink()
0.060649 seconds

(7 allocations: 78.375 KB)

Use the same glass every time, drink
more beer!

Fredrik Bagge Carlson Performance

Profile your code

Profiling

Fredrik Bagge Carlson Performance

Profiling

Your goto-tool is always @time, watch memory allocation and GC-time

Type instability

Allocations

Fredrik Bagge Carlson Performance

Profiling

Julia has built in profiling capabilities
julia> @profile foo()

julia> Profile.print()
23 client.jl; _start; line: 373

23 client.jl; run_repl; line: 166
23 client.jl; eval_user_input; line: 91

23 profile.jl; anonymous; line: 14
8 none; myfunc; line: 2
8 dSFMT.jl; dsfmt_gv_fill_array_close_open!; line: 128

15 none; myfunc; line: 3
2 reduce.jl; max; line: 35
2 reduce.jl; max; line: 36
11 reduce.jl; max; line: 37

Fredrik Bagge Carlson Performance

ProfileView

ProfileView package is nicer

using ProfileView
@profile foo()
ProfileView.view()

Figure: Image shamelessly borrowed from Tim Holy

https://github.com/timholy/ProfileView.jl

Fredrik Bagge Carlson Performance

https://github.com/timholy/ProfileView.jl

Profiling tools

julia −−help
−−code-coverage=none|user|all Count executions of
source lines (omitting setting is equivalent to
"user")

−−track-allocation=none|user|all Count bytes
allocated by each source line

TypeCheck.jl

Fredrik Bagge Carlson Performance

Optimize your code

Optimization

Fredrik Bagge Carlson Performance

Optimize your code

Use the result of @profile, @time, track-allocation=user,
code-coverage=user

If your code spends 50% doing garbage collection, you can
reduce your running time with up to 50% by better memory
management.

Fredrik Bagge Carlson Performance

Devectorize

function foo(A)
log(sum(exp(A)))

end

using Devectorize
function bar(A)

@devec ret = log(sum(exp(A)))
ret

end
————————————————————————————

function test(f::Function)
A = ones(1_000_000)
for i = 1:1000

f(A)
end

end

@time test(foo) 6.249262 seconds
@time test(bar) 2.714373 seconds

Fredrik Bagge Carlson Performance

Performance enhancing start-up arguments

julia −−help

−−check-bounds=yes|no Emit bounds checks always or
never (ignoring declarations)

−−math-mode=ieee|fast Disallow or enable unsafe
floating point optimizations (overrides @fastmath
declaration)

@inbounds

@fastmath

Fredrik Bagge Carlson Performance

Julia startup arguments

julia –math-mode=fast

Type instability revisited

function foo()
a = 1 # Int64
for i = 1:100_000_000

a += i/(i+1)
end
a

end
@time foo()
2.1672 sec # Without fastmath
1.8540 sec # With fastmath

function bar()
a = 1.0 # Float64
for i = 1:100_000_000

a += i/(i+1)
end
a

end
@time bar()
0.7151 sec # Without fastmath
0.1911 sec # With fastmath

Warning: floating point operations are reordered and numerically
unstable algorithms might fail

Fredrik Bagge Carlson Performance

Benchmarking

Put your code in functions

Let the function compile before timing

Do not put function definitions and test code in same file (unless
precompilation is done before timing)

Watch out for unexpected memory allocation.

Read the performance tips!

Fredrik Bagge Carlson Performance

Homework

Monte-Carlo simulation of a bootstrap particle filter

I provide the baseline code

My code provides a descent particle filter implementation

The code is bad from a julia-performance point of view

Your job is to optimize it

Optimized code has to be equivalent (do not provide another
implementation of a particle filter)

x+ = 0.5x+ 25x
1 + x2 + 8 cos(1.2(t− 1)) + w

y = 0.05x2 + v

w, v ∼ N (0, σw), N (0, σv) E(wvᵀ) = 0

Fredrik Bagge Carlson Performance

The particle filter

for t = 2:T # Main loop
Resample
j = resample(w[t-1,:]’)
Time update
xp[t,:] = f(xpT,t-1) + sw*randn(1,N)
Measurement update
w[t,:] = wT + g(y[t]-0.05xp[t,:].^2)
Normalize weights
offset = maximum(w[t,:])
normConstant = log(sum(exp(w[t,:]-offset)))+offset
w[t,:] -= normConstant

end

...

Fredrik Bagge Carlson Performance

The Monte-Carlo simulation

particle_count = [5 10 20 50 100 200 500 1000 10_000]
time_steps = [20, 50, 100, 200]
for (Ti,T) in enumerate(time_steps)

for (Ni, N) in enumerate(particle_count)
Calculate how many Monte-Carlo runs to perform for the current
T,N configuration
montecarlo_runs =

maximum(particle_count)*maximum(time_steps) / T / N
for mc_iter = 1:montecarlo_runs

for t = 1:T-1 # Simulate one realization of the model
x[t+1] = f(x[t],t) + sv*randn()
y[t+1] = 0.05x[t+1]^2 + sv*randn()

end # t
xh = pf(y, N, g, f, sw0) # Run the particle filter
RMS += rms(x-xh) # Store the error

end # MC

...

Fredrik Bagge Carlson Performance

