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1. Introduction

This project concerns control of a continuous stirred tank reactor (CSTR). The
project encompasses modeling, controller implementation, controller tuning, and

sequence control of a system with multiple inputs and outputs (MIMO).

The process is a tank with an inflow and an outflow, where the inflow is assumed

to contain a nutrient medium that should be heated to 37 ○C before the next

process step; in the actual laboratory process water will be used. The temperature

can be manipulated by a heater, and to ensure a homogeneous temperature of

the medium, an an agitator can be used. The outflow from the tank is assumed

to vary depending on the demand from downstream process steps. The demand

will be viewed as a disturbance, and the control must be able to handle this

disturbance so that both the temperature and the liquid level in the tank are

affected as little as possible.

The tuning of the regulator parameters for the temperature and liquid level

controls will be performed using methods that are well established within the
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process industry. These methods are based on simple process models that you

will derive experimentally.

To automate the start-up, operation, and finalization of the process, you will use

sequence control. Based on a given template, you will create a program for control

of the CSTR process. The control sequence can be divided into three steps:

1. Initialization step

2. Main step

3. Termination step

In the initialization step, the process should be prepared for continuous operation

in the main step. This involves bringing the process state to the desired operating

point. In the main step, a given disturbance sequence will affect the system.

Using feedback control, the system should be able to handle and suppress the

disturbances. Finally, in the termination step, the controls should be switched

off, the tank should be emptied and then cleaned in place.

Project Goals

The first goal of the project is that you gain practical experience from sequence

control and digital control of MIMO systems. The second goal is that you should

learn how to use simple modeling tools and controller tuning methods that are

common practice in the process industry.

Project Report and Oral Presentation

When all tasks in this manual have been completed, the final program should

be demonstrated to and approved by your project supervisor. The project report

should then be completed and handed in, together with the final program. You

can use the same format for the project report as for the previous hand-in assign-

ments in the course or write it in the form of a laboratory report. The number

of the laboratory process that you have used should be specified in the report.

The report should contain all the relevant experimental data, preferably in the

form of graphs, that are needed to motivate your statements.

The project will also be presented orally in discussion groups, where the work

performed and the results should be discussed.

Preparations

Before you start working, you should read the complete project manual, includ-

ing the section that describes how JGrafchart works, see Appendix A.

2. Software

The development of the control system for the CSTR process will be done in

JGrafchart, which is a graphical Java implementation of the GRAFCET lan-

guage. The starting point for your work is the file start.xml, which contains

the basic structure of the program that you will develop during the course of the

project. For logging of data from the process, you will use the separate program

SockLog. These files can be downloaded from the course homepage. Below we

describe the workflow for various procedures in the form of enumerated lists.
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Figure 1 The main workspace in start.xml.

Starting Your Project Work

1. Log onto a computer in the laboratory using your student account.

2. Start a web browser and download the files start.xml, SockLog.sh, and

SockLog.jar from the course homepage.

3. Start JGrafchart by opening a terminal window (e.g., Konsole) and typing
JGrafchart.

4. Open start.xml in JGrafchart.

5. Verify that the interface looks like the one shown in Figure 1.

6. Click on the Properties button and verify that Simulator Mode is unmarked,

see Figure 2.

7. Click on the OK button to return to the main window.

Executing Your Program

1. Edit your program.

2. Press the Compile button to create a new executable. Make sure that no

compilation errors have occurred.

3. Press the Execute button to start the execution of the program. (An error
message will appear if the SockLog program has not been started first, see

below. If you do not intend to use logging, you can click Ignore to continue.)
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Figure 2 The Application Properties window.

4. Perform your experiments.

5. Press the Stop button to stop the execution.

Logging and Analyzing Data

1. Open a new terminal window and change directory to where SockLog has

been saved.

2. Run SockLog using the command sh SockLog.sh.

3. Execute your program according to the instructions above.

4. Press the Start logging button.

5. Perform your experiments.

6. Press the Stop logging button, give a filename and press save.

7. Repeat from 4 if you want to perform more experiments.

8. Open and run the saved files in MATLAB and analyze your data.

Please note that only the variables that have changed value during logging will

be saved. The number of variables in the resulting file may hence vary.

3. The CSTR Process

All experiments will be performed on the laboratory processes at the Department

of Automatic Control. There are six processes, and each group is recommended
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to stick to the same laboratory process throughout the project, since there are

small differences in the dynamics of the various processes.

Before use, the process must be connected to the computer and to an electrical

outlet. The process is turned on using the switch on its side. Check the liquid

level in the water basin; it should cover the larger part of the inlet pump. An

LED indicator on the front of the process shows green when the process is ready

and red when an error has occurred. The most common errors result from trying

to send a control signal that violates any of the internal interlocks:

• The liquid level in the tank must be above the coil when the heater is

turned on, in order not to damage the heater.

• No more liquid may be added if the tank is almost full, in order to prevent

flooding.

There is a reset button on the side of the process that can be pressed when the

cause of the error has been removed.

Do not forget to turn off the power to the process when you leave the

laboratory.

Signals

The process consists of a tank with a number of sensors and actuators. These

are illustrated in Figure 3. The measurement signals are:

1. The liquid temperature, Temp.

2. The liquid level, Level.

The input signals are the voltages over the inlet pump, the outlet pump, the

agitator, and the heater. Since we in the given scenario cannot affect the outflow,

it will be viewed as a disturbance acting on the process. The following three

signals will be available to the controller:

1. The voltage over the inlet pump, InPump.

2. The voltage over the heater, Heat.

3. The voltage over the agitator, Agitator.

The agitator will either be turned on using a predefined voltage or turned off.

In the process industry, signal levels are often not represented by their physical

quantities but are expressed in terms of a percentage (0–100%). In the case of
the CSTR process, a liquid level at 0% corresponds to an empty tank, while 100%

means a full tank. Temperature is measured in a similar way, but here, a value

of 0% corresponds to 0 ○C, while 100% means 100 ○C.1

The temperature sensor in the tank has a bias that must be calibrated for.

TASK 1

Calibrate the temperature sensor by changing the value of TempCalibration so

that Temp shows about 20 ○C.

1Since the heater has such a low power, the Temp signal reports a higher value than the actual

value. In this way, a higher power output than the real one is simulated.
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Figure 3 Block diagram over the system and its signals. The names of the signals are

the same as those used in the JGrafchart template.

TASK 2

Reason about how the control signals affect the measurement signals. Discuss

and motivate which input signal should be used to control the liquid level and

which should be used to control the temperature.

4. Modeling of the Liquid Level Dynamics

The rate of change of the liquid level, dV/dt, equals the difference between the
inflow qin and the outflow qout, which is described by the mass balance equation

dV

dt
= qin − qout [m3/s] (1)

Assume that the inflow and the outflow are proportional to the voltages sent to

the pumps, i.e., qin = k1uin and qout = k2uout.

TASK 3

Derive the transfer functions from both pumps to the liquid level in the tank, h.

Give expressions for the gain from the inlet pump to the change of level (κ1) and
from the outlet pump to the change of level (κ2).

Both pumps have a threshold voltage, i.e., a signal level under which the pump

will not transport any liquid. Because of the design of the pump, the threshold

voltage could vary depending on whether liquid is already flowing through the

pump or not.

The threshold voltage can be determined from a simple experiment. Set the input

signal to the pump so that it produces a flow. Then gradually decrease the input

signal until the flow stops. The voltage value when the flow has just stopped

corresponds to the threshold voltage. The experiment could be repeated with

smaller decrements to achieve higher accuracy.

TASK 4

Perform experiments on the inlet and outlet pumps and determine the threshold

voltages of both pumps. To do this, execute the program and set the output values

(0–100%) by changing InPump and OutPump, respectively.

Later in the project, in the main step, the outlet pump should operate in a region

between 5 and 10 percentage points above the threshold voltage. These voltage
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levels are denoted u−out and u
+
out, respectively, i.e.

u_out_minus = u_out_threshold + 5

u_out_plus = u_out_threshold + 10
(2)

Specify values for these parameters in the main window of the program template.

The pump dynamics are nonlinear, not least because of the threshold voltage

discussed above. In the limited interval that the pump will operate, however, the

linear model developed in Task 3 can be used. Therefore it is important that

the model parameters are determined for the actual operating point that will be

used.

If the pumps have been idle for a long period of time or if you by accident have

let air into the pumps, then the initial flow will be lower than during continuous

operation.

A simple method to determine the gain is to start from the differential equation

that describes the liquid height in the tank, see Task 3. Integrating both sides

of the equation from time t0 to time t1 yields

h(t1) − h(t0) = κ1

t1∫

t0

uin(t)dt− κ2

t1∫

t0

uout(t)dt. (3)

TASK 5

Propose an experiment that avoids the nonlinear dynamics of the pumps and

uses (3) to determine κ1 and κ2.

TASK 6

Select suitable values for the input signals uin and uout, perform the experiment

you proposed above, and determine κ1 and κ2. Verify by further experiments

that the parameters are valid also for other input signals close to the operating

points. Use the possibilities to log and analyze data in MATLAB and to generate

graphs for your report.

5. Liquid Level Control

From Equation (1) we can see that the level dynamics is an integrator. A simple
method for design of PI controllers for integrating processes is arrest time tuning,

see Appendix B.

TASK 7

Use arrest time tuning to determine suitable parameters for the level control.

Use the arrest time Ta = 2 s.

TASK 8

What limits how low arrest time Ta can be specified? Reason about this.

When implementing the controller, the knowledge of the regulator parameters is

not enough. We also need to limit the control signal in order not to damage the
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actuator. Also, if the controller has integral action, we need to avoid integrator

windup.

In start.xml, P control of the liquid level is implemented in the workspace named

LevelControl. In the macro step PI its structure can be observed. In a first step,

the desired control signal, v1, is calculated. If this signal is below the lower limit

or above the upper limit of the actuator, the signal is then saturated.

TASK 9

Implement PI control of the liquid level in JGrafchart. Use a setpoint value

of 40%. The expression for updating the I-part, when using the Euler forward

discretization method, becomes

Ipart = Ipart + K*h/Ti*(Lref-Level) + h/Tt*(u-v1)

Note that the expression contains an anti-windup mechanism. Use the rule of

thumb Tt = 0.5Ti to avoid having to tune another controller parameter. The
control signal should be limited to the interval [umin, 100%].

To implement the level control:

1. Open LevelControl.

2. Set umin to a value just below the threshold voltage of the inlet pump. It

is important that the inlet pump does not transport any water when the

control signal is umin.

3. Specify values for the parameters K , Ti, Tt, and the setpoint Lref.

4. Open the module PI inside LevelControl.

5. Modify the contents of PI to give PI control.

When the level control has been implemented, it can be activated by setting the

boolean variable LevelControlOn to 1. To turn off the control, reset this variable

back to 0. If necessary, adjust Ta (and thereby the controller parameters) until
a step change in the outlet pump from u−out to u

+
out does not give a larger level

deviation than 2% of the height of the tank. Remember that Ta is just a design

parameter than has been used to derive controller parameters from a model; the

real arrest time may be different from the theoretical value if there are model

errors. How well does theory match reality regarding the value of Ta?

6. Modeling of the Temperature Dynamics

One of the great benefits of feedback control is that we can often achieve good

performance even if we base the controller design on a rough process model. In

the case of liquid level control, we could easily derive a mathematical model based

on first principles. Here will instead obtain a simple process model through a

step-response experiment.

A common model for many systems in the process industry is a first-order linear

model with a deadtime:

Gp(s) =
Kp

sT + 1
e−sL (4)
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Figure 4 Step response and modeling of a first-order process with a deadtime.

To determine the parameters of the model, a step-response experiment can be

carried out. First, the process output should be stabilized near the desired oper-

ating point. When all signals are stationary, a step is added to the input signal.

The idea is illustrated in Figure 4, where the desired operating point for the

output signal is 20%. A step of size 1% has been added to the input signal at

time zero, yielding the response shown in the upper plot.

To find the three process parameters in (4), the following procedure can be ap-
plied:

1. Determine the process static gain through

Kp =
∆y

∆u
=
y∞ − y0
u∞ − u0

(5)

2. Draw a tangent to the output where the slope reaches its maximum value,

corresponding to the red line in Figure 4.

3. Determine the deadtime L as the time from the change in the input to the

intersection of the tangent to the output base level, y0.

4. Determine the time, T63%, at which y has reached 63% of the full response,

i.e., y(T63%) = y0 + 0.63 (y∞ − y0).

5. Determine the time constant T by subtracting the dead time from the time

that was measured in the previous step, T = T63% − L.

For the example in Figure 4 we obtain the following values:

Kp =
2%

1%
= 2

L = 4.40− 0 = 4.40

T = 9.58− 4.4 = 5.18
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The process can hence be modeled by the transfer function

Gp(s) =
2

5.18s+ 1
e−4.4s. (6)

TASK 10

Perform a step-response experiment according to the description above and calcu-

late the model parameters in (4). The input to the heater is given by the variable
Heat (0–100%). Make sure that there is a continuous flow through the reactor.
This can be done by setting the outlet pump value to u_out_minus and activating

the level control. To achieve a homogeneous temperature in the liquid, the agita-

tor must be turned on. This is done by setting the variable AgitatorControlOn

to 1.

The experiment should be performed around the desired operating point, which

is 37 ○C. One way to do this as follows:

1. Find a value of Heat that gives the temperature 37 ○C in steady state and

denote this value u0.

2. Set Heat to 0.8u0 and let the temperature stabilize.

3. Make a step change in Heat up to 1.2u0 and let the temperature stabilize.

This gives a step response around 37 ○C that can be used in the modeling.

4. If necessary, repeat steps 2–4 with larger steps.

In the report you should clearly show how Kp, L, and T have determined. Use

the possibilities to log data and then analyze them in MATLAB.

7. Temperature Control

A common method for PI controller tuning in process industry is lambda tuning.

It assumes that the process can be approximated by a first-order model with a

deadtime, see (4). Lambda tuning is described in Lecture 9 and in Chapter 8 of
Process Control.

TASK 11

Use lambda tuning to derive suitable controller parameters based on your model.

Use λ = T as a starting point for the desired time constant for the closed-loop
system.

TASK 12

Implement the temperature control in JGrafchart with the setpoint value 37%.

There should be a continuous flow through the tank and the agitator should

be activated, as in Task 10. If necessary, adjust λ (and hence the controller
parameters) if the control gives rise to oscillations or if the closed-loop response
is deemed too slow.

To implement the controller, proceed similarly to Task 9, but use the workspace

named TempControl.

10



TASK 13

Make a step disturbance using the outlet pump, changing its value from u−out to

u+out. How large is the maximum error in the temperature? Propose at least two

different actions that could be taken to reduce the influence of the disturbance.

8. Feedforward

If it is possible to measure the signal acting as process disturbance, then the

liquid level control can be improved by feedforward. The simplest variant of this

is a so called static feedforward compensator, which means adding a term to the

control signal that is proportional to the measured disturbance.

TASK 14

Starting from the transfer function derived in Task 3, design a static feedforward

from the outlet pump signal (the measured disturbance) to the inlet pump signal
(the control signal), such that the influence of the disturbance is eliminated.
How is the magnitude of the feedforward related to κ1 and κ2? How should the

feedforward be added to the control algorithm, taking into account control signal

saturation and anti-windup?

The static feedforward can be implemented inside LevelControl by specifying

a value for the feedforward gain FF. Copy the PI controller for level control to

the module PIandFF and add the feedforward term there. In this way, it will be

easy to turn on and off the feedforward using the buttons Level Feedforward

On/Off in the main workspace.

TASK 15

Implement the feedforward and run the process with the feedforward active and

using an outflow of u−out. Make a step-change in the outflow with the amplitude

of 20 percentage units. How large is the maximum control error, and how does

it compare to the case without feedforward. Make use of the possibilities to log

data and then analyze it in MATLAB to generate graphs for your report.

What happens when the process is first run without feedforward and then the

feedforward is turned on? Why does this happen and how could it be avoided?

9. Completing the Control Sequence

All regulator parameters that should be used to control the process are now

known, and it is time to merge everything into a complete program. This should

be done step by step in the JGrafchart file where level and temperature control

has been implemented, following the procedure below. Note that there are several

ways to implement the same behavior, where some ways are more efficient than

others.

Preparation Step

Before the process can be operated with a continuous flow, the tank needs to

be prepared. It is ready when the level and the temperature are at or slightly

above the setpoint and when the agitator is turned on. This must be achieved in
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several steps, since filling and warming will not be completed at the same time

if they are started simultaneously.

When filling the tank, the inlet pump can be controlled directly by setting InPump

= F. The value of F is already specified, and this should be used. The agitator is

started by setting AgitatorControlOn to 1. Note that there is a built-in interlock

that prevents the agitator and the heater to operate if the variable LevelLow in

the workspace LevelIndicator is 1.

TASK 16

Determine a suitable way to bring the process to the desired state and create a

procedure for this in the JGrafchart program, starting from the structure already

available to the left in the main window.

Main Step

The main step of the process is denoted Run in start.xml, and it is important

that its named is not changed. This step will continue until StopRun becomes

1, which happens when the variable RunTime reaches the value FinalTime or

when the user pushes the Stop Run button. In this step, the outflow should

vary according to a predefined profile to simulate a variable demand from a

downstream production step. The profile is started when the variable OutFlowOn

is set to 1. The initial outflow is u−out, and after a while it is changed to u
+
out.

TASK 17

Add activation of the level and temperature controls in the main step. Note that

the agitator should still be turned on.

Finalization Step

When the main step has completed, the inflow should be turned off, the tank

should be emptied and then cleaned in place. In this step we will have to extend

the structure of LevelIndicator to also determine whether the tank is empty or

full. For this purpose, a level indicator function is needed.

Level Indicator Function. The liquid level can vary continuously between 0

and 100 percent. A structure using boolean variables telling whether the tank is

full or empty simplifies several other functions in the finalization step.

TASK 18

Enter the LevelIndicator workspace. It contains three boolean variables and

a structure used to control the variable LevelLow, which is used to ensure that

the heater and agitator cannot be on when the liquid level is too low. Create a

new structure in this workspace with conditions and commands such that the

following is fulfilled:

• Full should be 1 when Level >= 70, otherwise 0.

• Empty should be 1 when Level <= 10, otherwise 0.

• LevelLow should continue to work just like before.
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Emptying and Cleaning. When the level indicator has been implemented,

we can continue the completion of the control sequence. The emptying of the

tank should be performed by setting OutPump to a suitable value, for instance

F. When the tank is empty (LevelIndicator.Empty is 1), then cleaning in place
should be performed in the macro step named CIP. The macro step is opened in

the same way as a workspace, and inside it, ordinary steps and transitions can

be used to create a structure. In this macro step the cleaning procedure should

be implemented as follows:

1. The tank should be filled with water. Use LevelIndicator.Full to deter-

mine when the tank is full.

2. The tank should then be emptied. Use LevelIndicator.Empty to determine

when the tank is empty.

3. The tank is now clean and the control sequence should go back to the initial

step.

TASK 19

Implement the finalization step according to the above specifications.

10. Testing the Control Sequence

The complete sequence should now be ready for testing.

TASK 20

Start the sequence by pressing the Start Sequence button. Make sure that the

correct commands are given at the right moments in time and that the process

behaves according to the specifications. Use logging to store data that can be

analyzed and plotted in MATLAB and then used in the report.

11. Conclusions

In this project we have created a program for control of a CSTR process. The

program contains both sequence control and PI control of level and temperature.

Such a combination of discrete and continuous control is very common in practice

and can be found in industrial processes as well as in household appliances such

as washing machines.

TASK 21

Reflect upon the work that you have performed in this project. Discuss the mod-

eling, the control and the sequence control; what worked well, what did not work

so well, and how could the various parts be improved? What have you learned

during the course of the project, both at a high level and at the detailed level?

TASK 22

How can the project be improved to make it more instructive for future students?
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A. Introduction to JGrafchart

JGrafchart is a free software for development and execution of sequence control

programs, developed at the Department of Automatic Control, Lund University.

This appendix will only treat the subset of the JGrafchart functionality that is

relevant to the project.

Example

A simple example of a JGrafchart program is shown in Figure 5. A lamp should

be turned on when a button is pushed. The lamp should then stay lit for two min-

utes. The boolean variables lamp and button represent the lamp/button being

Figure 5 A simple JGrafchart program that turns on a lamp and then turns it off again

after 120 seconds. Steps, transitions, and other elements are available in the palette to

the left, while the program can be edited in the right window.

turned on/pushed, 1, or off/not pushed, 0. The two steps off and on corresponds

to the lamp being turned on or not. When button becomes 1, the transition from

off and on is taken, lighting the lamp. When the lamp has been lit for 120

seconds, the transition from on to off is taken and the lamp is turned off. The

currently active step is marked with a black token when the program is run; this

is not visible in the figure.

Programming in JGrafchart

Programming in JGrafchart is performed using drag and drop from the menu to

the left into the workspace to the right. Objects can be marked, moved, deleted,

cut, and pasted as in a typical graphical editor. Steps and transitions are con-

nected by clicking and dragging on the short pins sticking out from the upper

and lower parts of the objects. The standard rules of GRAFCET must be followed.

For instance, it is not possible to connect two steps together without a transition

inbetween.

Compilation

The program must be compiled before it can be run. This is done by pressing

the Compile button in the upper toolbar or by choosing Compile in the Execute
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menu. Compilation errors are shown in red in the Messages area just beneath

the upper toolbar.

Two types of errors can occur at compilation time: syntax errors and semantic

errors. For instance, the condition y OR z would generate a syntax error, since

the correct syntax for an or expression in JGrafchart is y | z Semantic errors

are generated for instance when undefined variables are referenced.

To run the compiled program, click the Execute button in the toolbar or select

Execute in the Execute menu. Changes that have been performed after the latest

compilation will not affect the program being executed.

Execution

A JGrafchart program is executed periodically. Each cycle, the following opera-

tions take place:

1. All digital and analog inputs are read.

2. All transitions whose conditions are true are marked.

3. All marked transitions are activated, deactivating the preceding steps and

activating the following steps (see Actions below).

4. All step clocks (accessed by <stepName>.t) are updated.

5. All variables that are affected by step actions are updated, including the

writing of digital and analog outputs.

Syntax

The syntax for expressions in JGrafchart is quite similar to that of Java. An

important difference is that 0 and 1 are used as boolean constants (rather than
false and true).

The following operators are supported by JGrafchart: +, -, *, /, ! (negation), &

(and), | (or), == (equality), != (inequality), <, >, <=, >=.

Variable names are local to each workspace of the program. For instance, Y

refers to the variable Y of the current workspace. Access to variables in other

workspaces can be done using dot notation. For instance, W2.Y refers to the

variable Y in the workspace W2.

The expression stepName.x returns 1 if the step is active and 0 otherwise, while

stepName.t returns the number of cycles that the step has been active (0 if the
step is not active).

Actions

For each step, a number of different actions can be specified, that should be

executed when the step is activated, active, and deactivated. Four different types

of actions are supported in JGrafchart:

• Start action (S): An action that is taken when the step is activated.
S <action>;

• Periodic action (P): An action that is executed once per cycle, as long as
the step is active.

P <action>;

• Exit action (X): An action that is taken when the step is deactivated.
X <action>;
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• Normal/boolean action (N): Connects a boolean variable to the state of
the step. The variable becomes 1 when the step is activated and becomes

0 when the step is deactivated.

N <boolean variable>;

<action> could either be an assignment or a method call:

• Assignment: <variable> = <expression>

• Method call: <method>()

Note that an action must always be terminated by a semicolon!

Transition Conditions

Each transition has a condition that should evaluate to either 0 or 1. If the

condition is 0 then the transition will not happen, while 1 will enable a transition

if the preceding step is active.

Building Blocks in JGrafchart

Steps. The name of the step is shown to the left, and the actions are shown

in the action box to the right of the step. Right-clicking on the step makes it

possible to hide/show the action box, edit the actions, or change the name of the
step.

Initial Step. All initial steps are activated when the execution of the program

starts.

Transitions. A transition is associated with a condition that must be true, 1,

to enable a transition between two steps.

Figure 6 A transition.

Macro Steps. Amacro step represents a hierarchical abstraction containing its

own workspace, see Figure 7. The workspace is opened or closed by right-clicking

on the macro step and selecting Show/Hide Body. The first step inside a macro

step is an enter step, where the execution will start. Similarly, the last step is an

an exit step, where the execution finishes. Besides being marked with arrows,

the enter and exit steps are ordinary steps that have the same menu choices as

regular steps. Using macro steps, it is possible to divide a large program into

smaller, manageable pieces.
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Figure 7 A macro step M2 and its associated workspace, containing the enter step S1,

the exit step S2, and a transition inbetween.

Variables. A variable in JGrafchart can be of the type (real, boolean, integer or
string and always have an associated name and value. Variables are graphically

represented by boxes, where the name of the variable is found under the box and

the

Action Buttons. An action button performs a specific action when you click

on it.

Workspace Objects. A workspace object creates a separate part of the pro-

gram and is used to structure the code. The PI controllers in this project are

implemented in separate workspaces.

Text Objects. Text objects can be used as comments in the program.

Documentation

For more detailed documentation, it is recommended that you on the Online

Help, found in the Help menu. You can also get more information about a given

object by first selecting Object Help in the toolbar and then clicking on an object.
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Figure 8 Block diagram for PI control of an integrating process.

B. Arrest Time Tuning

Arrest time tuning is a simple design method for PI controllers, aimed at load dis-

turbance rejection in processes where the transfer function from input to output

can be viewed as a pure integrator:

Y(s) =
kv

s
U(s) (7)

Control of an integrating process subject to a constant load disturbance is illus-

trated in Figure 8. The arrest time, Ta, is defined as the time it takes for the

process output to turn back to the setpoint after a step disturbance at the pro-

cess input, d. This is illustrated in Figure 9. It can be shown that the regulator

parameters that are needed to achieve a desired value of Ta are given by

K =
2

kvTa
, (8)

Ti = 2Ta. (9)
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Figure 9 The arrest time Ta is the time it takes before the process output turns back

towards the setpoint after a step load disturbance at the process input.
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