Systems Engineering/Process Control L3

» Mathematical modeling
» State-space models
» Stability

Reading: Systems Engineering and Process Control: 3.1-3.4
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Process modeling

» Dynamics in processes often described by differential equations
» Two approaches:
1. Mathematical modeling
» Use physical laws (conservation equations etc) to create model
2. Experiments

» Create experiments (e.g., step response), analyze input & output
» FRTO041 System identification

In practice, a combination of both methods is often used
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Mathematical modeling

» Flow balances
» Intensity balances
» Constitutive relations
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Flow balances

» volume flow [m3/s]

Change in

[stored

vo/ume] = [Inflow] — [Outflow]

per time unit

» material flow [mol/s]

Change in number of
accumulated particles| = [
per time unit

Inflow of}

__ | Outflow o
particles

particles

’1



Flow balances

» energy flow [W]

stored energy| = [Power in] — [ Power out]

Change in
per time unit

» current flow [A]

Sum current| _ | Sum current
to node — | from node
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Intensity balances

» momentum balance [N]

Change in . .
| momenum | - (B - et
per time unit

» voltage balance [V]

[Sum voltage around circuit] = 0
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Constitutional relations

v

v

v

v

Ideal gas law
_nk
P="y
Torricelli’s law
v=+/2gh
Energy in heated liquid
W=0CpVT

Ohm’s law
u=~Ri



Typical balance equations for chemical processes

Total mass balance:

de Z Piqi — Z Piq;

i=all i=all
inlets outlets

Mass balance for component j:

dcj Z Cjiqi — Z C;iqi + er

i=all i=all
inlets outlets

Total energy balance:

—- =2 pViHi— Y pViHi+ > Qu+W

i=all i=all k=all phase
inlets outlets boundaries

(all follow from physical conservation laws)



Example: CSTR with exothermic reaction

Qin> CAjin, T}

» Exothermic reaction A — B, r = kge E/ET¢,
» Cooling coil with temperature T,
» Perfect stirring, constant density p
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Example: CSTR with exothermic reaction

Total mass balance:

a(pv) _

Mass balance for component A:

d(caV
% = CA,inQin —CAq —TV
Total energy balance:

e, it

Fri PCoqin(Tin — T) + (—AH,)rV + UA(T. — T)
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Example: CSTR with exothermic reaction

After simplifications:

A L
dt - qzn q
—d;? = —q‘i,n (cain — ca) — koe #/FTcy
= nep o ~ T.—-T
az v (Tl T) + pCp e cp + VpCp( c )

v

Nonlinear third order model

State variables: V,ca, T

Possible inputs: gi,, g, ca ins Tin, T

Parameters (constants): p, C,, (—AH,), ko, E, R, U, A

v

v

v
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Example: Mechanical system

v

v

v

v

Mass m with position z
External force: F

Spring force: Fj, = —kz
Damper force: Fy = —dz
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Example: Mechanical system

Momentum balance:
mi=F —kz—dz

Introduce v =z =

Linear second order model
State variables v, z

Input: F

Parameters (constants): m, &, d

v

v

v

v
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State-space form

X
u Yy
— System |———
In general, x, u and y are vectors:
X1 ui hal
xn um yp

» n = number of state variables = system order
» m = number of inputs
» p = number of outputs (measurements)
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State-space form

» x is called system state (state)
» it contains values of all accumulated quantities in the system
» (it represents the system “memory”)
» The dynamics are described by n first order differential
equations:

dx1
= filer, ooy Xn, U1, oy Um)
dx

< = fn(xl,---,xn, ul,"',um)

dt
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State-space form

» Outputs described by p algebraic equations (not always stated):

ylzgl(xl,---,xm ul,"',um)

yngp(xly---,xn,uly---,um)

» System can be written in vector form as:

d .
d—gtc = f(x,u) (state equation)
y=g(x,u) (measurement equation)

» (f and g can be nonlinear functions)
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State-space form for linear systems

» A system is linear if all f; and g; are linear functions
» Example:

dx1
dr =a11X%1+ ...+ a1pXy + b11u1 + ...+ bipunm
dx,
2 = Ap1X1+ ...+ appxy + b1+ ...+ bpmum

y1 =c11%1 + ...+ c1pXp +diiur + ...+ dipm

Yp = Cp1X1 + ...+ CpnXp +dp1ur + ... + dpmlim

17/41



State space form for linear systems

In matrix form:

d .
d_’tc — Ax + Bu (state equation)

y=Cx+ Du (measurement equation)

» x and u are deviations from equilibrium point
» (x,u) = (0,0) is always in equilibrium (why?)
» D is called system direct term (often 0 for real processes)

Mini problem: What dimensions does matrices A, B, C and D have?
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Example: Mechanical system

» State vector: x = [Z]
» We control u = F and measures y = z

» The model on state space form with matrices:

dx 4 _k 1
a0 5] ()
—_—— ——
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Example: Compartment models

» System consists of connected compartments
» One state variable for every compartment
» Represents mass or concentration of studied subject

» Transportation speed proportional to concentration differences

Example with two compartments:

u
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Example: Compartment models

» Introduce state variables

c1 = concentration in compartment 1
ce = concentration in compartment 2

» Dynamics are given by:

d01

VIE = klg(CZ — Cl) —koc1 +u
de
V2d—t2 = ki2(c1 — c2)

» Divide with V; and V; respectively to get state-space form
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Example: Compartment model

» Suppose Vi1 =Vo =kio=ky=1

» Suppose that system is in equilibrium ¢1(0) = ¢2(0) =0
» Response after injection of unit volume at time 0

1

0.8}

C1, C2

» (experiment called “impulse response”)

0.6

I
»

C1
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Hand-in 1

» Compartment system with three compartments:

» MATLAB with Control System Toolbox
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Solution of the linear state equation

X
u Y
System
» state-space model of system:
dx :
i Ax + Bu (state equation)
y=Cx+ Du (measurement equation)

» How does x (and y) depend on input u and initial state x(0)?
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Solution of state equation — scalar case

» System with one state variable and one input:

dx(t)
dt

= ax(t) + bu(t)
» Solution: t
x(t) = e*x(0) +/ e bu(z) dr
0
» Example: Constant input u(t) = up and a # 0:

x(t) = e*x(0) + g(eat — 1uyg

x(¢) limited if @ < 0
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Simulation with »(¢) = 1and x(0) =0

x(t) fora=-1,6=05,1,2

oF [ e ey g ey
- - b=2
b=1
1k i _
/ b=05
/s
0 L
0 5 10
Time
x(t) fora = —0.5, -1, =2, if b/a = —1
1r — T e e =
! a=-—2
1y 0=
1/
0 L
0 5 10
Time
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Solution of state equation — general case

» State space model:

%:Ax+3u

» Solution: ,
(1) = eAx(0) + / A=) By(1) dr
0
where e4? is matrix exponential function, defined as

(A07 | (a0

At _
et =1+ At + ol 31
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Example: Mechanical system

v

v

v

v

Recall state-space system:
dx _d _k 1
= m m m
dt [ 1 0 ] rF [o] “
Assume:

d=0, F=u=0, x(0)=[zgg;]=[(l)], m=k=1

i.e., no damping, no external force
Gives state-space system and exponential matrix:

dx (0 -1 At [cost —sint
dat |1 o)™ ¢ 7 |sint cost

A
Solution:

_ At _ [cost —sint 0) (—sint
x(t) = ex(0) = [sint cos ¢ ] [1] B [ cos ¢ ]
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Simulation of mechanical system
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Eigenvalues

v

v

v

v

Eigenvalues of A given by n roots to characteristic equation:
det(1I —A) =0
det(AI — A) = P(A) is called characteristic polynomial

Eigenvalues can be complex

Multiplicity of eigenvalue = nbr of eigenvalues with same value

30/41



Eigenvalues

» Suppose A is diagonal with eigenvalues 14,...,4,:

A1 0 0 ... 0

0 22 0 ... 0

0 0 0 ... A,

» Then

et 0 0 ... 0

0 et 0 ... 0
eAt= . . .

0 0 0 .. et

» Every eigenvalue 4; gives a term et in solution
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Eigenvalues

» Assume that A is a general matrix

» Every eigenvalue of A gives a term P,,,_;(¢)e*? in eA? where

» P,,,_1(t) is a polynomial in ¢ of order at most m; — 1
» m; is the multiplicity of the eigenvalue

» Example:
» A matrix [—1 1 ]

» Eigenvalues:

» Exponential matrix:
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Stability for linear systems

» Stability is a system property — does not depend on input
» Can therefore study the uncontrolled system:

dx

X _ A
dr =%

» Solution:
x(t) = eA'x(0)
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Stability notions

Asymptotic stability: x(¢) — 0 as ¢t — oo for all initial states
Stability: x(¢) limited as ¢t — oo for all initial states

Instability: x(¢) unlimited as ¢t — oo for some initial state

(Marginally stable: Stable but not asymptotically stable system)
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Example

Asymptotically stable systems:

» Water tank with hole in the bottom
» Temperature in oven
» Speedin acar

(Marginally) Stable systems:

» Water tank without hole in the bottom
» Mass-damper-spring system without damping
» Distance covered in a car

Unstable systems:

» Inverted pendulum
» Segway
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Stability in the scalar case

» State-space model and solution:

dx(t
0 _ ax), x(t) = ex(0)
dt
» Solution plots for different a:
a<0 a=0 a>0
2 2 2
w1 \\ |1 w1
0 0 0
0 0.5 1 0 0.5 1 0 05 1

t t t

» asymptotically stable ifa < 0
» stableifa <0

» unstable ifa > 0
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Stability in the general case

» Eigenvalues 1; to A-matrix decides stability

» Alinear system is:
» Asymptotically stable if all Re(4;) < 0
» Unstable if some Re(4;) > 0
» Stable if all Re(4;) < 0 and possible pure imaginary eigenvalues
have multiplicity 1
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Routh—Hurwitz stability criteria

Second order systems:
» 2nd order characteristic polynomial (for 2 x 2-matrix A):
det(AI — A) = P(1) = A2 + p1A + py
» All roots in left half-plane (all Re(4;) < 0) iff p; > 0 and ps > 0
Third order systems:
» 3rd order characteristic polynomial (for 3 x 3-matrix A):
det(AI —A) = P(1) = A3 + p1A% 4 paA + p3

» All roots in left half-plane iff p; > 0, ps > 0, ps > 0 and
pip2 > p3.
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Example: Mechanical system

» State-space model:

dx _a _k 1
a7 7] (5]
y = (0 1]x
» Characteristic equation:
a+d ko, d R

» Suppose m, k,d > 0: Asymptotically stable
» Suppose m,k > 0,d = 0: Eigenvalues

11,2 = :Ei\l ﬁ
m

stable (but not asymptotically stable)
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Simulation of mechanical system

0.5

-0.5

m=k=d=1:

[—-
- =
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Linear systems on state-space form in MATLAB

o\°

Define system matrices

A= [12; 3 4];
B = [0; 1];

C [1 01,

D = 0;

14

% Create state-space model
sys = ss(A,B,C,D);

[o)

% Compute eigenvalues to A matrix
eig(A)

% Simulate system w/o input from initial state xO0
initial (sys, x0)
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