
Systems Engineering/Process Control L3

◮ Mathematical modeling

◮ State-space models

◮ Stability

Reading: Systems Engineering and Process Control: 3.1–3.4
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Process modeling

◮ Dynamics in processes often described by differential equations

◮ Two approaches:
1. Mathematical modeling

◮ Use physical laws (conservation equations etc) to create model

2. Experiments
◮ Create experiments (e.g., step response), analyze input & output
◮ FRT041 System identification

In practice, a combination of both methods is often used
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Mathematical modeling

◮ Flow balances

◮ Intensity balances

◮ Constitutive relations
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Flow balances

◮ volume flow [m3/s]

[
Change in

stored volume
per time unit

]

=
[
Inflow

]
−

[
Outflow

]

◮ material flow [mol/s]

[
Change in number of
accumulated particles

per time unit

]

=

[

Inflow of
particles

]

−

[

Outflow of
particles

]

4 / 41



Flow balances

◮ energy flow [W]

[
Change in

stored energy
per time unit

]

=
[
Power in

]
−

[
Power out

]

◮ current flow [A]

[

Sum current
to node

]

=

[

Sum current
from node

]
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Intensity balances

◮ momentum balance [N]

[
Change in
momentum
per time unit

]

=

[

Driving
forces

]

−

[

Braking
forces

]

◮ voltage balance [V]

[
Sum voltage around circuit

]
= 0
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Constitutional relations

◮ Ideal gas law

p =
nR

V
T

◮ Torricelli’s law

v =
√

2�h

◮ Energy in heated liquid

W = CpρVT

◮ Ohm’s law

u = Ri
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Typical balance equations for chemical processes

Total mass balance:

dρV

dt
=

∑

i=all
inlets

ρiqi −
∑

i=all
outlets

ρiqi

Mass balance for component j:

dcjV

dt
=

∑

i=all
inlets

cj,iqi −
∑

i=all
outlets

cj,iqi + r jV

Total energy balance:

dE

dt
=

∑

i=all
inlets

ρiViHi −
∑

i=all
outlets

ρiViHi +
∑

k=all phase
boundaries

Qk +W

(all follow from physical conservation laws)
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Example: CSTR with exothermic reaction

qin, cA,in, Tin

q, cA, T

Tc

◮ Exothermic reaction A→ B, r = k0e
−E/RT cA

◮ Cooling coil with temperature Tc

◮ Perfect stirring, constant density ρ
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Example: CSTR with exothermic reaction

Total mass balance:

d(ρV )

dt
= ρqin − ρq

Mass balance for component A:

d(cAV )

dt
= cA,inqin − cAq− rV

Total energy balance:

ρVCp
dT

dt
= ρCpqin(Tin − T) + (−∆Hr)rV + UA(Tc − T)
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Example: CSTR with exothermic reaction

After simplifications:

dV

dt
= qin − q

dcA

dt
=
qin

V
(cA,in − cA) − k0e

−E/RT cA

dT

dt
=
qin

V
(Tin − T) +

(−∆Hr)k0
ρCp

e−E/RT cA +
UA

V ρCp
(Tc − T)

◮ Nonlinear third order model

◮ State variables: V , cA, T

◮ Possible inputs: qin, q, cA,in, Tin, Tc

◮ Parameters (constants): ρ, Cp, (−∆Hr), k0, E, R, U , A
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Example: Mechanical system

k

d

m F

z
0

◮ Mass m with position z

◮ External force: F

◮ Spring force: Fk = −kz

◮ Damper force: Fd = −dż

12 / 41



Example: Mechanical system

Momentum balance:

mz̈ = F − kz− dż

Introduce v = ż [

v̇ = −
d

m
v−

k

m
z+
1

m
F

ż = v

◮ Linear second order model

◮ State variables v, z

◮ Input: F

◮ Parameters (constants): m, k, d
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State-space form

x

u y
System

In general, x, u and y are vectors:

x =





x1
...

xn




u =





u1
...

um




y =





y1
...

yp





◮ n = number of state variables = system order

◮ m = number of inputs

◮ p = number of outputs (measurements)
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State-space form

◮ x is called system state (state)
◮ it contains values of all accumulated quantities in the system
◮ (it represents the system “memory”)

◮ The dynamics are described by n first order differential

equations:

dx1

dt
= f1(x1, . . . , xn, u1, . . . , um)

...

dxn

dt
= fn(x1, . . . , xn, u1, . . . , um)
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State-space form

◮ Outputs described by p algebraic equations (not always stated):

y1 = �1(x1, . . . , xn, u1, . . . , um)

...

yp = �p(x1, . . . , xn, u1, . . . , um)

◮ System can be written in vector form as:

dx

dt
= f (x,u) (state equation)

y = �(x,u) (measurement equation)

◮ ( f and � can be nonlinear functions)
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State-space form for linear systems

◮ A system is linear if all fi and �i are linear functions

◮ Example:

dx1

dt
= a11x1 + . . .+ a1nxn + b11u1 + . . .+ b1mum

...

dxn

dt
= an1x1 + . . .+ annxn + bn1u1 + . . .+ bnmum

y1 = c11x1 + . . .+ c1nxn + d11u1 + . . .+ d1mum
...

yp = cp1x1 + . . .+ cpnxn + dp1u1 + . . .+ dpmum
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State space form for linear systems

In matrix form:

dx

dt
= Ax + Bu (state equation)

y= Cx + Du (measurement equation)

◮ x and u are deviations from equilibrium point

◮ (x,u) = (0, 0) is always in equilibrium (why?)

◮ D is called system direct term (often 0 for real processes)

Mini problem: What dimensions does matrices A, B, C and D have?
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Example: Mechanical system

◮ State vector: x =




v

z





◮ We control u = F and measures y= z

◮ The model on state space form with matrices:

dx

dt
=




− d
m

− k
m

1 0





︸ ︷︷ ︸

A

x +





1
m

0





︸ ︷︷ ︸

B

u

y=


0 1





︸ ︷︷ ︸

C

x +


0





︸ ︷︷ ︸

D

u
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Example: Compartment models

◮ System consists of connected compartments

◮ One state variable for every compartment
◮ Represents mass or concentration of studied subject

◮ Transportation speed proportional to concentration differences

Example with two compartments:

1 2

u

k12

k0
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Example: Compartment models

◮ Introduce state variables

c1 = concentration in compartment 1

c2 = concentration in compartment 2

◮ Dynamics are given by:

V1
dc1

dt
= k12(c2 − c1) − k0c1 + u

V2
dc2

dt
= k12(c1 − c2)

◮ Divide with V1 and V2 respectively to get state-space form
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Example: Compartment model

◮ Suppose V1 = V2 = k12 = k0 = 1

◮ Suppose that system is in equilibrium c1(0) = c2(0) = 0

◮ Response after injection of unit volume at time 0

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

c1

c2

t

c 1
,
c 2

◮ (experiment called “impulse response”)
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Hand-in 1

◮ Compartment system with three compartments:

u

k12 k23

k0

1 2 3

◮ MATLAB with Control System Toolbox
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Solution of the linear state equation

x

u y
System

◮ state-space model of system:

dx

dt
= Ax + Bu (state equation)

y= Cx + Du (measurement equation)

◮ How does x (and y) depend on input u and initial state x(0)?
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Solution of state equation – scalar case

◮ System with one state variable and one input:

dx(t)

dt
= ax(t) + bu(t)

◮ Solution:

x(t) = eatx(0) +

∫ t

0

ea(t−τ )bu(τ ) dτ

◮ Example: Constant input u(t) = u0 and a ,= 0:

x(t) = eatx(0) +
b

a
(eat − 1)u0

x(t) limited if a < 0
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Simulation with u(t) = 1 and x(0) = 0

x(t) for a = −1, b = 0.5, 1, 2

0 5 10
0

1

2

b = 0.5

b = 1

b = 2

Time

x(t) for a = −0.5, −1, −2, if b/a = −1

0 5 10
0

1

a = −2
a = −1
a = −0.5

Time
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Solution of state equation – general case

◮ State space model:

dx

dt
= Ax + Bu

◮ Solution:

x(t) = eAtx(0) +

∫ t

0

eA(t−τ )Bu(τ ) dτ

where eAt is matrix exponential function, defined as

eAt = I + At+
(At)2

2!
+
(At)3

3!
+ ⋅ ⋅ ⋅

27 / 41



Example: Mechanical system

◮ Recall state-space system:

dx

dt
=




− d
m

− k
m

1 0



 x +





1
m

0



u

◮ Assume:

d = 0, F = u = 0, x(0) =




v(0)
z(0)



 =




0

1



 , m = k = 1

i.e., no damping, no external force
◮ Gives state-space system and exponential matrix:

dx

dt
=




0 −1
1 0





︸ ︷︷ ︸

A

x, eAt =




cos t − sin t
sin t cos t





◮ Solution:

x(t) = eAtx(0) =




cos t − sin t
sin t cos t








0

1



 =




− sin t
cos t




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Simulation of mechanical system

0 2 4 6 8 10 12

-1

-0.5

0

0.5

1

t

x

z
v
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Eigenvalues

◮ Eigenvalues of A given by n roots to characteristic equation:

det(λ I − A) = 0

◮ det(λ I − A) = P(λ) is called characteristic polynomial

◮ Eigenvalues can be complex

◮ Multiplicity of eigenvalue = nbr of eigenvalues with same value
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Eigenvalues

◮ Suppose A is diagonal with eigenvalues λ1, . . . ,λn:

A =





λ1 0 0 . . . 0

0 λ2 0 . . . 0
...

. . .
...

0 0 0 . . . λn





◮ Then

eAt =





eλ1t 0 0 . . . 0

0 eλ2t 0 . . . 0
...

. . .
...

0 0 0 . . . eλnt





◮ Every eigenvalue λ i gives a term eλ it in solution
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Eigenvalues

◮ Assume that A is a general matrix

◮ Every eigenvalue of A gives a term Pmi−1(t)e
λ it in eAt where

◮ Pmi−1(t) is a polynomial in t of order at most mi − 1
◮ mi is the multiplicity of the eigenvalue

◮ Example:
◮ A matrix

A =




−1 1

0 −1





◮ Eigenvalues:

λ1 = λ2 = −1 (m = 2)

◮ Exponential matrix:

eAt =




e−t te−t

0 e−t




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Stability for linear systems

◮ Stability is a system property – does not depend on input

◮ Can therefore study the uncontrolled system:

dx

dt
= Ax

◮ Solution:

x(t) = eAtx(0)

33 / 41



Stability notions

Asymptotic stability: x(t) → 0 as t→∞ for all initial states

Stability: x(t) limited as t→∞ for all initial states

Instability: x(t) unlimited as t→∞ for some initial state

(Marginally stable: Stable but not asymptotically stable system)
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Example

Asymptotically stable systems:

◮ Water tank with hole in the bottom

◮ Temperature in oven

◮ Speed in a car

(Marginally) Stable systems:

◮ Water tank without hole in the bottom

◮ Mass-damper-spring system without damping

◮ Distance covered in a car

Unstable systems:

◮ Inverted pendulum

◮ Segway
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Stability in the scalar case

◮ State-space model and solution:

dx(t)

dt
= ax(t), x(t) = eatx(0)

◮ Solution plots for different a:

0 0.5 1
0

1

2

0 0.5 1
0

1

2

0 0.5 1
0

1

2
a < 0 a = 0 a > 0

xxx

ttt

◮ asymptotically stable if a < 0
◮ stable if a ≤ 0
◮ unstable if a > 0
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Stability in the general case

◮ Eigenvalues λ i to A-matrix decides stability

◮ A linear system is:
◮ Asymptotically stable if all Re(λ i) < 0
◮ Unstable if some Re(λ i) > 0
◮ Stable if all Re(λ i) ≤ 0 and possible pure imaginary eigenvalues

have multiplicity 1
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Routh–Hurwitz stability criteria

Second order systems:

◮ 2nd order characteristic polynomial (for 2$ 2-matrix A):

det(λ I − A) = P(λ) = λ2 + p1λ + p2

◮ All roots in left half-plane (all Re(λ i) < 0) iff p1 > 0 and p2 > 0

Third order systems:

◮ 3rd order characteristic polynomial (for 3$ 3-matrix A):

det(λ I − A) = P(λ) = λ3 + p1λ
2 + p2λ + p3

◮ All roots in left half-plane iff p1 > 0, p2 > 0, p3 > 0 and

p1p2 > p3.
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Example: Mechanical system

◮ State-space model:

dx

dt
=




− d
m

− k
m

1 0



 x +





1
m

0



u

y=


0 1



 x

◮ Characteristic equation:

det(λ I − A) =

∣
∣
∣
∣

λ + d
m

k
m

−1 λ

∣
∣
∣
∣
= λ2 +

d

m
λ +

k

m
= 0

◮ Suppose m, k,d > 0: Asymptotically stable

◮ Suppose m, k > 0,d = 0: Eigenvalues

λ1,2 = ±i

√

k

m

stable (but not asymptotically stable)
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Simulation of mechanical system

m = k = d = 1:

0 2 4 6 8 10 12
-1

-0.5

0

0.5

1

t

x

z
v

m = k = 1, d = 0:

0 2 4 6 8 10 12

-1

-0.5

0

0.5

1

t

x

z
v
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Linear systems on state-space form in MATLAB

% Define system matrices

A = [1 2; 3 4];

B = [0; 1];

C = [1 0];

D = 0;

% Create state-space model

sys = ss(A,B,C,D);

% Compute eigenvalues to A matrix

eig(A)

% Simulate system w/o input from initial state x0

initial(sys,x0)
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