
Systems Engineering/Process Control L10

Controller structures

◮ Cascade control

◮ Mid-range control

◮ Ratio control

◮ Feedforward

◮ Delay compensation

Reading: Systems Engineering and Process Control: 10.1–10.6
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Cascade control

Cascade control can be used for systems that can be split:

y1y2u
Gp2 Gp1

where

◮ both y2 and y1 can be measured

◮ Gp2 is (or can be made) at least 10 times faster than Gp1

Example: Gp1 =
K1

1+ T1s
and Gp2 =

K2

1+ T2s
with T2 < 0.1T1
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Cascade control – block diagram

u2 y2
u1r

y1
Gp2Gc2Gc1 Gp1

◮ Secondary controller Gc2 controls y2
◮ Inner loop is fast compared to outer loop
◮ Often P-controller with high gain
◮ For outer loop we have y2 ( u1

◮ Primary controller Gc1 controls y1
◮ Often PI or PID controller
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Example: Heat exchanger

Steam Water

TIC

TT

Control may work poorly if, e.g.,:

◮ valve in nonlinear

◮ steam pressure varies (load disturbance)
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Example: Heat exchanger with cascade control

Steam Water

FIC

TT

TIC
Börvärde

FT

◮ The inner loop controls the steam flow

◮ Setpoint to flow controller given by temperature controller
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Example: Heat exchanger – simulation

With cascade control (solid) and without (dashed); disturbance at t = 5:
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Mid ranging

Useful for processes with two inputs and one measurement, e.g.,:replacements

Σ

y

u2

u1

Gp2

Gp1

◮ u1 high precision but little working range

◮ u2 low precision but big working range

7 / 29



Mid ranging – Example

Flow control with two controlled valves:

replacements
v1

v2 FT

◮ Valve v1 is small and has high accuracy
◮ big risk of saturation

◮ Valve v2 is big but has worse accuracy

◮ How can they cooperate?
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Mid ranging – Example

Mid ranging:

GR1GR2

v1

v2 FT

◮ Fast controller GR1 controls flow with little valve v1

◮ Slow controller GR2 adjusts big valve v2 such that v1 is in the

middle of its working range
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Mid ranging – simulation

Big valve (dashed) keeps little valve (solid) at 50%
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Mid ranging – Block diagram

Σ

y
ry

ru1

u1

u2

Gp1

Gp2

Gc1

Gc2

◮ Gc1 and Gp1 forms a fast and accurate loop

◮ Input from Gc1 is measurement for Gc2
◮ ru1 chosen to middle of u1:s working range

◮ Gc2 has low gain, maybe only I part
◮ Rule of thumb: at least 10 times bigger time constant than fast

loop
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Ratio control

Example: Keep constant air/fuel ratio

Suppose we want yl/yb = a. Naive solution (control ratio a

directly):

Regulator Process
r
b

u
b y

b

a u
l y

lRegulator Process

Nonlinear, gain in second loop varies with yb
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Ratio control

Better solution:

Regulator Process
r
b

u
b y

b

a

u
l y

lRegulator Process
r
l

◮ Setpoint for flow to first loop that is assumed slow

◮ Second loop is made fast and maintains desired ratio
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Feedforward – Example

Concentration control

QIC

QT QT

Bas

Framkoppling Återkoppling

Syra Blandning

◮ Feedforward can compensate for sudden changes in acid

concentration
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Feedforward – Simulation of example

With feedforward (solid) and without (dashed); disturbance at t = 5:
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Feedforward – Block diagram

Gc Gp

Gff

−1

l

r u y

ΣΣ

How to choose compensator Gff (s)? Depends on where

disturbance l enters the system.
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Feedforward – Tank example

Control of lower tank

Gc

l1

l2

1

2

u

y

r
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Feedforward – Tank example

Feedforward from l1:

Gc Gp1 Gp2

Gff

−1

l1

r u y
ΣΣΣ

Choose Gff (s) = −1 to eliminate effect of disturbance
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Feedforward – Tank example

Feedforward from l2:

Gc Gp1 Gp2

Gff

−1

l2

r u y
ΣΣΣ

Choose Gff (s) = −
1

GP1
to eliminate effect of disturbance
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Implementation of feedforward

The inverse
1

Gp1(s)
can be problematic to implement

Example:

Gp1(s) =
1

1+ sT
e−sL

1

Gp1(s)
= (1+ sT)esL (derivation and neg. time delay)

Common solutions:

◮ Introduce lowpass filter (compare D part in PID-controller)

◮ Approximate negative time delays with 0

◮ Implement the static gain only
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Dead time compensation

Example of dead time process:

Gp(s) =
Kp

1+ sT
e−sL

Hard to control if L > T (dead time dominated)

Frequency analysis:

Gp(s) = Gp0(s)e
−sL

pGp(iω c)p = pGp0(iω c)p

argGp(iω c) = argGp0(iω c) −ω cL

The larger L, the smaller the phase margin
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Example: Control of paper machine

Gp(s) =
2

1+ 2s
e−4s

Simulation with cautious PI controller (K = 0.2, Ti = 2.6);
disturbance at t = 25:
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Example: Control of paper machine

Simulation with more aggressive PI controller (K = 1, Ti = 1):
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Dead time compensation with Smith predictor

Regulator Process
r u y 

Modell

Modell utan
dödtid

Σ

y 1

y 2

+

+
–

Controller designed after model without delay. Model must be:

◮ asymptotically stable

◮ accurate enough
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Analysis of Smith predictor

Gc Gp

Ĝp−Ĝp0

−1

r e u y

Smith-predictor

Σ Σ

◮ Gp = Gp0e
−sL – real process

◮ Ĝp = Ĝp0e
−sL̂ – model of process

◮ Ĝp0 – model of process without dead time

◮ Gc – controller designed for Ĝp0
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Analysis of Smith predictor

Control signal:

U =
Gc

1− Gc(Ĝp − Ĝp0)
E

Closed loop system:

Y =
GpGc

1− Gc(Ĝp − Ĝp0) + GpGc
R

Suppose Gp = Ĝp (perfect model):

Y =
Gp0e

−sLGc

1− Gc(Gp0e−sL − Gp0) + Gp0e−sLGc
R

=
Gp0Gc

1+ Gp0Gc
e−sL R

Like control of process without delay, but with delayed response
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Example: Control of paper machine

Model without delay: Gp0(s) =
2

1+ 2s

Simulation with aggressive PI controller (K = 1, Ti = 1) and Smith

predictor with perfect process model:
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Example: Control of paper machine

Simulation with aggressive PI controller and Smith predictor with

not perfect process model (L̂ = 0.9L, T̂ = 0.9T):
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The Smith predictor – conclussions

◮ Works only for asymptotically stable systems

◮ Works only if process model is accurate

◮ Controller should be designed such that closed-loop time

constant larger than process dead time

(Better variations for dead time compensation exist, but all rely on

prediction using a process model)
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