
Systems Engineering/Process control L9

The PID controller

◮ The algorithm

◮ Frequency analysis

◮ Practical modifications

◮ Tuning methods

Reading: Systems Engineering and Process Control: 9.1–9.6

1 / 31

The PID controller

“Based on a survey of over eleven thousand controllers in

the refining, chemicals and pulp and paper industries, 97%
of regulatory controllers utilize PID feedback.”

[Desborough and Miller, 2002]

“School-book form”:

u(t) = K
(

e(t) + 1
Ti

∫ t

0

e(τ)dτ + Td
de(t)
dt

)

Transfer function:

Gc(s) = K
(

1+ 1

sTi
+ sTd

)

2 / 31

The P part

◮ P controller:

u = K (r − y) + u0 = K e+ u0

umax

umin

u

e

0
e– e

0

u
0

Proportionalband

◮ u0 can be chosen to eliminate stationary error at setpoint

3 / 31

Example: P control of Gp(s) = (s+ 1)−3

0 10 20
0

1

O
u

tp
u

t

0 10 20
−2

0

2

4

6

In
p

u
t

Time

K = 5

K = 2
K = 1

K = 5

K = 2
K = 1

4 / 31

The I part

◮ Introduce automatic/online/dynamic selection of u0:

replacements

K e

u0

u∑

1

1+ sTi

U (s) = K E(s) + 1

1+ sTi
U (s)

U (s) = K
(

1+ 1

sTi

)

E(s)

◮ Assume stationarity: How does u and u0 relate? What is e?

5 / 31

Example: PI control of Gp(s) = (s+ 1)−3 (K = 1)

0 10 20
0

1

O
u

tp
u

t

0 10 20
0

2

In
p

u
t

Time

Ti = ∞

Ti = 5

Ti = 2
Ti = 1

Ti = ∞
Ti = 5

Ti = 2
Ti = 1

6 / 31

The D part

◮ A P controller gives the same control in both these cases:

B

A
replacements

Control error

Time

e

ep

ep

t t+ Td
◮ Predicted error:

ep(t+ Td) (e(t) + Td
de(t)
dt

◮ PD controller:

u(t) = K
(

e(t) + Td
de(t)
dt

)

7 / 31

Example: PD control of Gp(s) = (s+ 1)−3 (K = 5)

0 10 20
0

1

O
u

tp
u

t

0 10 20

−2

0

2

4

6

In
p

u
t

Time

Td = 0.1
Td = 0.5

Td = 2

Td = 0.1
Td = 0.5

Td = 2

8 / 31

Parallel and serial form

◮ PID controller on standard form (parallel form):

Gc(s) = K +
K

sTi
+ sKTd

e u

K

K
Tis

KTds

Σ

◮ PID controller on serial form (common in industry):

G′c(s) = K ′
(
1+ 1

sT ′
i

)
(1+ sT ′d)

e u
K ′ 1+ 1

T ′
i
s 1+ T ′ds

9 / 31

Parallel and serial form

Transformation parallel form Q serial form:

K = K ′ T
′
i
+T ′
d

T ′
i

K ′ = K
2

(

1+
√

1− 4Td
Ti

)

Ti = T ′i + T ′d T ′i = Ti
2

(

1+
√

1− 4Td
Ti

)

Td = T ′iT
′
d

T ′
i
+T ′
d

T ′d = Ti
2

(

1−
√

1− 4Td
Ti

)

◮ Identical parameters for PI and PD controller

◮ Parallel → serial only possible if Ti ≥ 4Td
◮ Parallel form more general

10 / 31

Frequency analysis of PID controller

Frequency function for PID controller on serial form:

G′c(iω) =
K ′

iωT ′i
(1+ iωT ′i)(1+ iωT ′d)

◮ For low frequencies (small ω):

pG′c(iω)p (
K ′

ωT ′i
argG′c(iω) (−90○

◮ Zero at s = −1/T ′i bends amplitude curve up and increases

phase with 90○ around ω = 1/T ′i
◮ The same holds for the zero at s = −1/T ′d

11 / 31

Frequency analysis of PID controller

10
-2

10
-1

10
0

10
1

10
0

10
1

10
-2

10
-1

10
0

10
1

-100

-50

0

50

100

1/T ′i 1/T ′
d

K ′

Frequency [rad/s]

G
a

in
P

h
a

s
e

12 / 31

Repetition: Amplitude and phase margin

10
-1

10
0

10
-2

10
-1

10
0

10
1

10
-1

10
0

-250

-200

-150

-100

-50

1/Am

ϕm

ω c

ω o

Frekvens [rad/s]

F
ö

rs
tä

rk
n

in
g

F
a

s

13 / 31

Frequency analysis of PID controller

The P part:

◮ Affects gain at all frequencies

◮ Higher gain [faster system but worse margins

The I part:

◮ Increases gain and reduces phase for low frequencies

◮ Eliminates low frequency (constant) control errors but gives

worse phase margin

The D part:

◮ Increases gain and phase at high frequencies

◮ Gives better phase margin (to a limit) but amplifies noise

14 / 31

Practical modifications of PID controllers

School-book form:

e(t) = r(t) − y(t)

u(t) = K e(t)
︸ ︷︷ ︸

P(t)

+ K
Ti

∫ t

0

e(τ)dτ
︸ ︷︷ ︸

I(t)

+ KTd
de(t)
dt

︸ ︷︷ ︸

D(t)

Modifications:

◮ The P part: reference weighting

◮ The I part: anti-windup

◮ The D part: reference weighting and limited gain

15 / 31

Modification of P part

◮ Introduce reference weighting β :

P(t) = K
(
β r(t) − y(t)

)
, 0 ≤ β ≤ 1

◮ Can be used to limit overshoot after reference changes

(moves a zero in closed-loop system)

◮ Note! Works only if also I part used

16 / 31

Example: Reference weighting with PI control

(reference change at t = 0, load disturbance at t = 25):

0 50
0

1

0 50
0

2

β = 0
β = 0.5

β = 1

β = 0
β = 0.5

β = 1

Time

In
p
u
t

O
u
tp
u
t

17 / 31

Modification of I part

Input is always limited in practice (umin ≤ u ≤ umax)

◮ Let v be the input the controller wants to use

◮ Let u be the input the controller can use

umax

umin

u

v

Integrator windup: I part keeps growing when signal saturated

18 / 31

Example: PI control with integrator windup

Gp(s) = 1/s, K = Ti = 1, −0.3 ≤ u ≤ 0.3:

0 10 20

O
ut

pu
t

0

1

2

Time
0 10 20

In
pu

t

0

1

2
v

u

I

19 / 31

Anti-windup

I(t) =
∫ t

0

(
K

Ti
e(τ) + 1

Tt

(
u(τ) − v(τ)

)
)

dτ

PI controller with anti-windup:

K

K

Ti

1

s

1

Tt

∑ ∑

∑e v u

I − +

Actuator
(or model)

Rule of thumb for constant Tt:

◮ PI controller: Tt = 0.5Ti
◮ PID controller: Tt =

√
TiTd

20 / 31

Example: PI control with anti-windup

Same example as before, but with anti-windup (Tt = 0.5):

0 10 20

O
ut

pu
t

0

1

2

Time
0 10 20

In
pu

t

0

1
v

u

I

21 / 31

Modification of D part

◮ Reference weighting: derivate only measurement, not

reference

D(t) = −KTd
dy(t)
dt

◮ Limit gain with low-pass filter (extra pole):

D(s) = − sKTd

1+ sTd/N
Y(s)

(“fuskderivata”)

Maximal derivative gain N typically chosen in interval 5–20

22 / 31

Example: Limited derivative gain

y(t) = sin t+ 0.01 sin 100t, Td = 1, N = 5

0 5 10 15

-2

2
Brusfri signal

0 5 10 15

-2

2
Brusig signal y

0 5 10 15

-2

2
Brusig signal y

0 5 10 15

-2

2
Brusfri derivata

0 5 10 15

-2

2
Derivatan av y

0 5 10 15

-2

2
Fuskderivatan av y

23 / 31

Summary: Practical modifications

−1
sKTd

1+ sTd/N

β K

K

Ti

1

s

1

Tt

∑

∑

∑

∑

∑

y

r

v u

− +

Actuator
(or model)

(More to think about: bumpless transfer between manual/automatic

control, bumpless parameter changes, sampling filters, sampling,

. . .)

24 / 31

Tuning methods for PID controllers

◮ Manual tuning (lab 1)

◮ Ziegler–Nichols methods

◮ The Lambda method

◮ Arresttidstrimning (project)

◮ Model-based tuning (lab 2)

◮ Relay methods

◮ Optimization-based methods

◮ . . .

25 / 31

Ziegler–Nichols step response method

Experiment on open-loop system, read a and b in step response:

a

b

y

t

Controller K Ti Td
P 1/a
PI 0.9/a 3b

PID 1.2/a 2b 0.5b

26 / 31

Ziegler–Nichols frequency method

(Ziegler–Nichols’ ultimate-sensitivity method)

Experiment on closed-loop system

1. Disconnect I and D parts in PID controller

2. Increase K until oscillations with constant amplitude. This

K = K0.
3. Measure period time T0 for oscillations.

Controller K Ti Td
P 0.5K0
PI 0.45K0 T0/1.2
PID 0.6K0 T0/2 T0/8

(Note that T0 = 2π /ω 0, where ω 0 is frequency that gives

−180○ phase shift)

27 / 31

Ziegler–Nichols methods – warning

◮ Ziegler–Nichols’ methods give aggressive control with bad damping

◮ Recommendation: K lowered with 30–50 % for better robustness

◮ Example: PID control of Gp(s) = 1/(s+ 1)4:

0 25 50

O
ut

pu
t

0

1

Step response method
Ultimate sensitivity method
Ultimate sensitivity, 40% lower gain

Time
0 25 50

In
pu

t

0

2

28 / 31

Lambda method

1. Read deadtime L, time constant T and static gain Kp = ∆y
∆u

:

∆y

∆u

Process output

Control signal

63%

L T

29 / 31

Lambda-method

2. Choose λ = desired time constant for closed-loop system

◮ λ = T common choice
◮ λ = 2T a bit slower for more robustness

3. PI controller:

K = 1

Kp

T

L + λ
, Ti = T

PID controller (in serial form):

K ′ = 1

Kp

T

L/2+ λ
, T ′i = T , T ′d =

L

2

30 / 31

Model based tuning (Lab 2)

1. Find process transfer function Gp(s)
2. Choose controller type Gc(s)
3. Compute closed-loop system transfer function:

G(s) = Gp(s)Gc(s)
1+ Gp(s)Gc(s)

4. Choose controller parameters to place poles for G(s) to

achieve desired behavior (pole placement)

31 / 31

