
Systems Engineering/Process control L8

Frequency analysis

◮ Frequency response

◮ Bode- and Nyquist diagram

◮ Stability and stability margins

Reading: Systems Engineering and Process Control: 8.1–8.5
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Frequency analysis

◮ Study how systems react on signals with different frequencies

◮ Examples:
◮ Load disturbances – mostly low frequencies
◮ Measurement noise – high frequencies

◮ If system linear each frequency can be studied separately
◮ Sine wave in [ sine wave out
◮ Can be used to experimentally derive transfer functions

2 / 27



Frequency response

u(t) y(t)
G(s)

u(t) = sinω t

y(t) = A sin(ω t+ϕ)

A = pG(iω )p
ϕ = argG(iω )

◮ ω : frequency [rad/s]

◮ G(iω ): frequency function

◮ pG(iω )p: amplitude (function), amplification, magnitude

◮ argG(iω ): phase(function), phase shift
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Example: G(s) = 2
s+1

ω = 1 rad/s:
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Rules for complex numbers

z = x + iy

pzp =
√

x2 + y2

pz1z2p = pz1ppz2p,
∣

∣

∣

∣

z1

z2

∣

∣

∣

∣

= pz1p
pz2p

arg z = arctan y
x

(if x > 0)

arg z1z2 = arg z1 + arg z2, arg
z1

z2
= arg z1 − arg z2
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Example: G(s) = 2
s+1

G(iω ) = 2

iω + 1

pG(iω )p = 2√
ω 2 + 1

argG(iω ) = − arctanω

ω pG(iω )p argG(iω )
0 2 0○

1
√
2 −45○

∞ 0 −90○
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Bode diagrams

Draw pG(iω )p and argG(iω ) as functions of ω

◮ Amplitude curve pG(iω )p drawn in log-log-scale

◮ Phase curve argG(iω ) draw in log-lin-scale

(MATLAB command: bode)
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Example: G(s) = 2
s+1

Bode Diagram
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Mini problem

Read from Bode diagram:

◮ How much are inputs with frequency 0.5 rad/s
◮ amplified
◮ phase shifted

◮ How much are inputs with frequency 5 rad/s
◮ amplified
◮ phase shifted
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Example: Level dynamics in tank

q

}h

Linearized model:

∆H(s) = K1

sT1 + 1
∆Q(s)

System configured so that

K1=2,T1=1[

∆H(s) = 2

s+ 1∆Q(s)

Inflow ∆q(t) = sin 0.5t:

∆q
∆h

Outflow ∆q(t) = sin 5t:

∆q

∆h
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To draw/interpret Bode diagrams

◮ Suppose G(s) = G1(s)G2(s)G3(s) . . .
◮ Then

log pG(iω )p = log pG1(iω )p + log pG2(iω )p + log pG3(iω )p + . . .
argG(iω ) = argG1(iω ) + argG2(iω ) + argG3(iω ) + . . .

◮ Contribution from G1, G2, G3, . . . added in both amplitude and

phase diagrams

11 / 27



Typical systems

Will show Bode diagrams for the following systems:

1

1+ sT , 1+ sT real pole, real zero

e−sL dead time

ω 20
s2 + 2ζ ω 0s+ω 20

complex poles

(More examples in book)
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Bode diagram for real pole or real zero
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◮ A pole in s = − 1
T

bends the amplitude curve down and lowers the

phase curve with 90○ around ω = 1
T

; opposite directions for a zero
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Bode diagram for dead time
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◮ A dead time lowers phase curve exponentially, does not affect

amplitude curve
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Bode diagram for complex poles

◮ Complex poles with little damping ζ have big resonance peak at

eigen frequency ω 0 in the amplitude curve
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Nyquist diagrams

Draws G(iω ) as curve in complex plane as ω goes from 0 to ∞
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(MATLAB command: nyquist)

16 / 27



Example: G(s) = 2
s+1

Nyquist Diagram
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Stability for feedback systems

G0(s)

−1

u(t)
y(t)

z(t)

Suppose open-loop system G0(s) = Gc(s)Gp(s) is stable

u(t) = sinω t [ y(t) = pG0(iω )p sin
(

ω t+ argG0(iω )
)

z(t) = −pG0(iω )p sin
(

ω t+ argG0(iω )
)

= pG0(iω )p sin
(

ω t+ argG0(iω ) + 180○
)
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Stability for feedback systems

◮ If u(t) = z(t) a stable self oscillation occurs after switch flip

◮ This happens if:

pG0(iω )p = 1
argG0(iω ) = −180○

Z[

Nyquist curve for G0(s) goes through point −1
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Nyquist’s stability theorem

G0(s)

−1

u(t) y(t)
Σ

Suppose that the open-loop system G0(s) has no poles with

positive real part. Then the closed-loop system from u to y is

asymptotically stable if −1 is to the left of the Nyquist curve of

G0 when going from ω = 0 to ω = ∞.

(Note: Nyquist diagram for G0 used to infer stability for closed-loop)
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Example
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Amplitude margin

Amplitude margin shows maximal gain increase before instability:

◮ Let ω 0 be smallest frequency with argG0(iω 0) = −180○
◮ Amplitude margin is given by Am = 1/pG0(iω 0)p
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Example (I1 Problem 10)

◮ Transfer function from input to concentration in compartment 3

G3(s) =
1

(s+ 3.732)(s+ 1)(s+ 0.2679)
◮ Nyquist curve:
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Example (I1 problem 10)

◮ Read amplitude margin:

1

Am
= 0.042 \ Am = 24

◮ Interpretation: Maximal gain for P controller is 24 to guarantee

a stable closed loop system

K G3(s)

−1

r y
Σ
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Phase margin

Phase margin shows allowed phase decrease before instability:

◮ Let ω c be the smallest frequency with pG0(iω c)p = 1
◮ Phase margin is given by ϕm = 180○ + argG0(iω c)
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Amplitude and phase margin in Bode diagram
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Robustness

◮ To get a robust system we want:
◮ Am ∈ [2, 6]
◮ ϕm ∈ [45○, 60○]

◮ The bigger the margins, the less sensitive to model errors
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