Systems Engineering/Process control L7

Feedback systems, cont'd

» Analysis of stationary errors
» Feedback linearization
» Sensitivity analysis

Reading: Systems Engineering and Process Control: 7.1-7.2
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Analysis of stationary errors

» Standard loop with controller G.(s), process G (s)
» Suppose closed-loop system is stable

What is stationary error e(oo) for given

» reference r (servo problem)?

» load disturbances v (control problem)?
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Signal models

Load disturbance Reference
Impulse: Vis)=1 —

t

Step: V(s) = g R(s)=2

. S
t

b b

Ramp: V(s) = 2 R(s) = 2

Parabola: i V(s) = s% R(s) = %
_ S




Analysis of stationary errors

Control error is given by

_ 1 Gp(s)
E(s) =7 + Gp(S)Gc(S)R(S) 1+ Gp(s)Ge(s)

Vi(s)

The stationary error can be computed using end-value theorem:

lim e(¢) = limsE(s)

t—o00 s—0



Stationary error — Servo problem

» Let V(s) = 0 and suppose

KQ(s)

Gp(s)Ge(s) = s P(s)’

Q(0) =P(0)=1

(n = is total number of integrators in controller and process)

» Then:
s"P(s)

s"P(s) + KQ(s) E(s)

E(s) =



Stationary error — Servo problem

» Stationary error with step reference, R(s) = a/s:

e(co) = lim s"P(s)a _ ] @/0+K) n=0
~ s50s"P(s) + KQ(s) | 0 n>1
» Stationary error with ramp reference, R(s) = b/s%:
=0
5 s"P(s) b o " B
eoo) = spey + Ka) s | oK n L
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Stationary error — Servo problem

Step reference, R(s) =a/s  Ramp reference, R(s) = b/s?
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Stationary error — Control problem

Let R(s) = 0 and suppose K = K1 Ko, @ = Q1Q2, P = P;P; so that

Ge(s) = %11((5)), Q1(0) = P1(0) =1

Gp(s) = %, Q2(0) = Py(0) =1

» m = number of integrators in controller
» n = total number of integrators in controller and process
Then:

__S"K5Pi(s)Q2(s)
E(s) = S P(s) + KQ(s)

V(s)



Stationary error — Control problem

» Stationary error with impulse disturbance, V (s) = 1:

e(0) =0

» Stationary error with step disturbance, V (s) = a/s:

—aKy/1+K) m=0,n=0
e(o0) = hm_s’”KgPl(s)Qg(s)a = —a/Ii'/( ) m=0,n>1
550 s"P(s) + KQ(s) ! =
0 m>1

» Stationary error with ramp disturbance, V (s) = b/s?:

—00 m=0
i SACLTON N SR
s

0 m

e(c0) = lim " s"P(s) + KQ(s)



Stationary error — Conclusions

Servo problem: Follow ...

v

step reference requires 1 integrator in controller/process

v

ramp reference requires 2 integrators in controller/process

v

parabola reference requires 3 integrators in controller/process

Control problem: Eliminate ...

v

impulse disturbance requires as. stable closed-loop system

v

step disturbance requires 1 integrator in controller

v

ramp disturbance requires 2 integrators in controller
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Feedback linearization

Sensor (vaults, pumps,...) nonlinearities complicate control and analysis

u(?) / fu(®))

Two methods to linearize static nonlinearity f(u):

» Pre-multiply with inverse nonlinearity

» Use (inner) feedback (often P control)
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Example: Control of triple tank

qin =U

-
-
-
-

Qut

Transfer function from u to y:

2
W
Pl controller:
s+1
Ge(s) = 8s
Block diagram:
n G, > Gp
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Example: Control of triple tank

» Singularity diagram for closed-loop system:

&
Y

» Step response for feedback system:
1.5

1 b= — — —

>
0.5F

0
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Example: Control of triple tank

» Suppose inflow through fast opening vault

» Vault nonlinear characteristics: f(u) = vu, 0 <u < 1:

G

A 4
A\

—~

Gp

-1

A

» How is step response affected by nonlinearity?

14/28



Example: Control of triple tank

» Step response for closed-loop system, r(¢) = 1:
1.5

1= —f — =

>
05}

0

0 1I0 2I0 ; 3I0 4I0 50
» Step response for closed-loop system, r(¢) = 0.15:
0.3

02
>§ b e Ay s\
0.1

00 1IO 2I0 : 3I0 4I0 50
» Nonlinearity gives different step responses for different step sizes!
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Linearization using inverse nonlinearity

> Pre-multiply signal to vault with g(v) = v2:

-/

u

>

/_Z.

> Thenz = f(u) = f(g(v)) = F(V?) = V2 =

V4
—
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Sensitivity to parameter variations

» |f vault true characteristic is (left figure)

z=f(u)=u% a=0.3,050.7

1t
Eﬁ/ [ ,' //
= ,/
>~ 0 I"/‘ L L >~
0 1
v
» the following compensation with g(v) = 2 is achieved (right figure):
a=03: f(g (v))=f( ?) = v%F
a=05: f(g(v)) =f(*)=v
a=07: f(gW) = f@?) =0v'*
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Static compensation of nonlinearity

» Static compensation g(v) = v?

v | u P
G, > / > 7
|

» Step response for closed-loop system, r(¢) = 0.15:
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Feedback linearization of static nonlinearity

» Measure flow and introduce P control around vault:

v X u=/ z

P controller:
z=fu) =u"® = /K{v-2)

Nonlinearity v to z:

2=K({v-2)
z+z2
v= —
K

» If K bigwegetz ~v

19/28



Feedback linearization of static nonlinearity

» Relation between v and z for K = 10 and different f(u) = u®:
1

—_ = a=03
—a=05
08}l —_——a=07 4
Vi
#
4
L Y.
0.6 4
y
h p
0.4+
0.2
0 . . . .
0 0.2 0.4 0.6 0.8 1
v

» Close to linear and insensitive to parameter variations!

» Many (static) nonlinearities can be linearized the same way
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Triple tank: Compensation of nonlinearity

» Compensate nonlinearity with inner feedback loop:

,,,,,,,,,,,,,,,,,,,,,,,,

Ge

» This gives:

********
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Step response for compensated system

» Step response for closed-loop system

> reference r(t) = 0.15
> true nonlinearity f(z) = u* with @ = 0.3,0.5,0.7:

0.2 T T T T

045 [— — — ===
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¢

» Almost completely insensitive to parameter variations
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Example: Feedback amplifier

» Long distance phone calls: Many amplifiers needed
» Historic amplifiers Aoy, distorted sound (nonlinear amplification)
» Feedback amplifier invented by H. Black 1927

,,,,,,,,,,,,,,,,,,,,

» Gainfromutoy: G = ————
Y 1+ BAorL

> |fﬁAOL >>1$Gml/ﬂ
(small B gives big amplification, requires Aoy, big)
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Example: Feedback amplifier

» Feedback can eliminate frequency variations in amplification

amplifier gan, dB

Figure 3.3
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Reproduced (with partial redrawing) by permission of H.S. Black, from
Bell System Technical fournal, 1934, 13, p. 12
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Sensitivity analysis

— Gf G,

_Gy

» @, = open-loop system (often controller and process)
» Gy = feedforward
> G, =feedback (often -1)

Transfer function of closed-loop system from r to y:

_ Gr(s)Go(s)
Ge(s) = 17 Gy (s) Gy (s)

How is G, affected by variations in components G, G,, G,?
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Sensitivity analysis

» Define the relative sensitivity of a transfer function G w.r.t.
component H as

dG H dG /dH

H=9gH G- G/ H
» For G, we have:
Sg, =1
1
Se, =17 G,G,
Se G,G,
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Sensitivity analysis

> Relative sensitivity S, small if gain G, G, big
» Too high feedback gain may cause:

» much measurement noise to be fed back to system
> instability

» Typical design compromise: Want Gy big at low frequencies (integral
action), small at higher frequencies
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Feedback system — Summary

Pros:

» Changed dynamics

» Faster, more well damped, etc
» Closed-loop poles decided by controller parameters — pole placement

» Elimination of disturbances
» Elimination of stationary error requires integral action in controller

» Reduced sensitivity to process variation and nonlinearities

Cons:

» Measurement noise is fed back to process
» Can lead to instability
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