
Systems Engineering/Process control L5

◮ Impulse and step response

◮ Connection between transfer function and step response

◮ Nonlinear systems

Reading: Systems Engineering and Process Control: 5.1–5.3
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LTI systems – repetition (L3–L4)

State-space model

u(t) y(t)ẋ=Ax+Bu
y=Cx+Du

System response:

x(t) = eAtx(0)

+
∫ t

0

eA(t−τ )Bu(τ ) dτ

y(t) = Cx(t) + Du(t)

Stability:

Decided by eigenvalues of A

Input-output model

U(s) Y(s)
G(s)

System response:

Y(s) = G(s)U(s)

Stability:

Decided by poles to G(s)
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Impulse response

◮ Suppose that the system is in equilibrium

◮ How does output react to input impulse (Dirac function)?
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Impulse response for linear systems

δ (t) h(t)
G(s)

1. Laplace transform input: U(s) = 1
2. Output becomes:

H(s) = G(s)U(s) = G(s)

3. Inverse transform gives impulse response:

h(t) = L−1
{

G(s)
}

h(t) also called weighting function
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Impulse response for linear systems

For a system on state-space for the impulse response becomes:

h(t) = CeAtB + Dδ (t)

Stability notions (again):

◮ h(t) limited (except maybe at t = 0) Z[ stable system

◮ h(t) → 0Z[ asymptotically stable system

◮ h(t) unlimited Z[ unstable system

5 / 36



Step response

◮ Suppose system in equilibrium

◮ How does the output change after step in input?
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Step response for linear systems

1 y(t)
G(s)

1. Laplace transform input: U(s) = 1
s

2. Output becomes:

Y(s) = G(s)U(s) = G(s)1
s

3. Inverse transformation gives step response:

y(t) = L−1
{

G(s)1
s

}

=
∫ t

0

h(τ )dτ

(The step response is the integral of the impulse response)
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Static gain

◮ Step response end value is called static gain of system

◮ Can be computed using the end value theorem:

Y(s) = G(s)1
s

lim
t→∞
y(t) = lim

s→0
sY(s) = lim

s→0
sG(s)1

s
= G(0)

◮ Note: Step response end value exists only for asymptotically

stable systems!
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Example: CSTR

q, cR,in

q, cP, cR

cR cP

◮ Volume V , flow q

◮ Reaction R→ P
◮ Reaction rate k

Transfer function from cR,in to cP:

G(s) =
q
V
k

(s+ q
V
+ k)(s+ q

V
)

Static gain:

G(0) =
q
V
k

( q
V
+ k) q

V

= 1
q
kV
+ 1

Interpretation: If cR,in increases with 1,

cP increases with 1
q
kV
+1 at equilibrium
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Connection between transfer fcn and step response

System type:

◮ Integrator

◮ First order system

◮ Second order systems with real poles

◮ Second order systems with complex poles

◮ Systems with one zero

◮ Systems with time delays
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Integrating systems

G(s) = K
s

Example: Tank without free outflow:

qin

h

◮ Cross-sectional area: A

Transfer function from qin to h:

G(s) = 1/A
s
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Integrating systems

◮ Pole:

s = 0
◮ Step response:

Y(s) = G(s)1
s
= K
s2

y(t) = Kt
◮ No end value, since system is not asymptotically stable

12 / 36



Integrating systems

K = 1:
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1st order systems

G(s) = K

1+ sT , T > 0

Example: Temperature dynamics in a tank:

q, θ0

θ1

q, θ1

V

Transfer function from θ0 to θ1:

G(s) = 1

1+ sV
q
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1:a order systems

◮ Pole:

s = −1/T
◮ Step response:

Y(s) = G(s)1
s
= K

s(1+ sT)

y(t) = K
(

1− e−t/T
)

◮ T is called time constant of the system

y(T) = (1− e−1)K ( 0.63K
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1:a order systems

K = 1:
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◮ Step response speed decided by distance from pole to origin
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2nd order systems with real poles

G(s) = K

(1+ sT1)(1 + sT2)
, T1,T2 > 0

Example: Temperature dynamics in coupled tanks:

q, θ0

θ1

q, θ1

θ2

q, θ2

V1

V2

Transfer function from θ0 to θ2:

G(s) = 1
(

1+ sV1
q

)(

1+ sV2
q

)
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2:a order systems with real poles

◮ Poles:

s = −1/T1, s = −1/T2
◮ Step response:

Y(s) = G(s)1
s
= K

s(1+ sT1)(1 + sT2)

y(t) =
{

K
(

1− T1e
−t/T1−T2e−t/T2
T1−T2

)

, T1 ,= T2
K
(

1− e−t/T − t
T
e−t/T

)

, T1 = T2 = T

◮ Two time constants: T1, T2
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2nd order systems with real poles

K = 1:
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◮ Two poles gives softer and slower response than single pole
◮ equivalent time constant: Teq = T1 + T2

◮ If T1 ≫ T2 system behaves essentially as 1st order system

with time constant T1
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2nd order systems with complex poles

G(s) = Kω 20
s2 + 2ζ ω 0s+ω 2

0

, ω 0 > 0, 0 < ζ < 1

◮ ω 0 = undamped frequency

◮ ζ = relative damping

Example: Position dynamics for mechanical system

0

k

d

m F

z

Transfer function from F to z:

G(s) =
1
m

s2 + d
m
s+ k

m

Complex poles if d < 2
√
km
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2nd order systems with complex poles

Poles:

s = −ζ ω 0 ± i
√

1− ζ 2ω 0

ζ = cosϕ

Im

Re

ω 0

ϕ

Step response:

y(t) = K
(

1− 1
√

1− ζ 2
e−ζ ω 0t sin

(

ω 0
√

1− ζ 2 t+ arccosζ
)

)
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2nd order systems with complex poles

K = 1:
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◮ System speed decided by distance from poles to the origin
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2nd order systems with complex poles

K = 1:
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◮ System damping decided by angle of the poles
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Systems with zeros

◮ Suppose the system is given by

(1+ Tzs)G0(s)

◮ Zero in s = − 1
Tz

◮ Step response:

y(t) = L−1
{

G0(s)
1

s

}

+ TzL−1{G0(s)}

◮ Weighted sum of impulse response and step response for

G0(s)
◮ Big impact if zero close to the origin (Tz large)
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2nd order systems with zeros

Example: G(s) = 1+ sTz
(1+ 2s)2

-1 -0.5 0 0.5
-1

-0.5

0

0.5

1

0 5 10 15
-0.5

0

0.5

1
Tz=3

Tz=3 Tz=−3Tz=−3

Re

Im

Time

Singularity Chart Step Response

Dashed step response for G0(s) =
1

(1+ 2s)2

◮ Zeros affect initial response

◮ R.h.p. zeros gives inverse response behavior initially
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Systems with time delay

◮ Suppose the system is given by:

G(s) = G0(s)e−sL, L > 0

◮ Step response for part without delay G0(s):

y0(t) = L−1
{

G0(s)
1

s

}

◮ Step response with time delay:

y(t) = y0(t− L)

(e−sL cannot be interpreted with (finitely many) poles and zeros)
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Interpretation of poles and zeros

Poles

◮ Depends only on A-matrix, e.g., on system inner dynamics

◮ Decides system:
◮ stability
◮ speed
◮ damping

Zeros

◮ Harder to interpret

◮ Depends on how inputs and outputs are connected to system

(i.e., depends on B, C, and D matrices)

◮ A zero in s = a cancels the signal eat

◮ Influences mostly the initial step response behavior
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Processes that are difficult to control

Processes with:

◮ Poles in right half-plane (unstable)
◮ The bigger the real part (> 0) the harder to control

◮ Zeros in right half-plane (reversed response initially)
◮ The smaller real part (> 0) the harder to control

◮ Time delays
◮ The longer time delay, the harder to control
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Processes that are impossible to control

◮ Systems with poles and zeros in right half-plane (a, b > 0):

G(s) = Q(s)(s − a)
P(s)(s − b)

◮ If a = b: impossible to control

◮ If a ≤ 3b: impossible to control in practice

a b
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Examples

Bicycle with back wheel

steering

a/b ( 0.7 at 1 m/s

X29, a/b ( 4.33
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Nonlinear systems

Different kinds of nonlinearities:

◮ Nonlinearities in actuators and sensors, e.g.,:
◮ upper and lower limits on actuators and sensors
◮ pumps and valves with nonlinear characteristics
◮ friction and dead zones
◮ nonlinear sensors for temperature, flow, concentration

◮ Nonlinear dynamics in the process, e.g.,:
◮ level dependent outflow speed in a tank
◮ temperature dependent reaction speed in reactor
◮ population dependent rate of growth

◮ Nonlinearities in the controller, e.g.,:
◮ on/off control
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Example: Valve and pump characteristics

Flöde

Snabböppnande

Likprocentig

Linjär

Ventilläge

Flöde

Spänningu0

Methods to compensate for nonlinearity:

◮ Compensate with table/mathematical function

◮ Feedback around static nonlinearity (better and more robust)
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Example: pH control

Want to control pH but measures concentration:

pH

Concentration

◮ Can be compensated for with table/mathematical function
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Example: Logistic growth model

dx

dt
= rx

(

1− x
k

)

x = population, r = net growth rate, k = carrying capacity

0 2 4 6 8 10
0

20

40

60

80

100

Time

P
op

ul
at

io
n

34 / 36



Example: Hares and Lynxes

dH

dt
= rH

(

1− H
k

)

− aHL
c+ H , H ≥ 0,

dL

dt
= b aHL
c+ H − dL, L ≥ 0
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Linear vs nonlinear systems

Linear systems

◮ can equivalently be described with linear differential equation,

state-space model, transfer function, impulse response, or

step response

◮ are always in equilibrium at (x,u) = 0
◮ global analysis – poles/zeros decide stability globally

Nonlinear systems

◮ described by nonlinear differential equation/state-space model

◮ can have many equilibria (stable/unstable) and limit cycles

◮ simulation, local analysis using linearization
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