Systems Engineering/Process control L5

» Impulse and step response
» Connection between transfer function and step response
» Nonlinear systems

Reading: Systems Engineering and Process Control: 5.1-5.3
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LTI systems — repetition (L3-L4)

State-space model

u(t) i=Ax+Bu| ()

—

y=Cx+Du

System response:
x(t) = eA'x(0)
+ /t A7) Bu(r) dr
y(t) = C(')x(t) + Du(t)

Stability:
Decided by eigenvalues of A

Input-output model

U (s) Y(s)

G(S) —

System response:

Y(s) = G(s)U(s)

Stability:
Decided by poles to G(s)
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Impulse response

» Suppose that the system is in equilibrium
» How does output react to input impulse (Dirac function)?
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Impulse response for linear systems

5(2)

—1 G(s)

h(?)

————

1. Laplace transform input: U (s) =

2. Output becomes:

1

H(s) = G(s)U(s) = G(s)

3. Inverse transform gives impulse response:

h(t) =

LG}

h(t) also called weighting function



Impulse response for linear systems

For a system on state-space for the impulse response becomes:

h(t) = Ce* B + DS (1)

Stability notions (again):

» h(t) limited (except maybe at ¢ = 0) <= stable system
» h(t) — 0 <= asymptotically stable system
» h(t) unlimited <= unstable system



Step response

» Suppose system in equilibrium
» How does the output change after step in input?
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Step response for linear systems

1 y(t)

— G6) [——

. 1
1. Laplace transform input: U (s) = 5

2. Output becomes:
1
Y(s) = G(s)U(s) = Gs)

3. Inverse transformation gives step response:

)= {605 } - [ #ez

(The step response is the integral of the impulse response)



Static gain

» Step response end value is called static gain of system
» Can be computed using the end value theorem:

Y(s) = G(s)%

lim y(£) = lim s¥(s) = lim sG(s)© = G(0)
s—0 s—0 S

t—o00

» Note: Step response end value exists only for asymptotically
stable systems!



Example: CSTR

qﬂf" Transfer function from cg ;, to cp:
Lk
T G(s) = v
CR| cp () (S+%+k)(s+%)
(e
g, cp, CR Static gain:
Ik 1
G(0) = 75 " = @
» Volume V, flow ¢ (F+k)v +1
» Reaction R — P
Interpretation: If cg;, incr with 1
» Reaction rate k& P . CR’I‘" creases th,
cp increases with - at equilibrium
kV



Connection between transfer fcn and step response

System type:

v

Integrator

First order system

Second order systems with real poles
Second order systems with complex poles
Systems with one zero

Systems with time delays

v

v

v

v

v
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Integrating systems

G(s) = g

Example: Tank without free outflow:

Qin

& Transfer function from g;,, to A:

G(s) = —
- -

» Cross-sectional area: A
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Integrating systems

» Pole:
s=0

» Step response:

Y(s) = Gls)t =

y(t) = Kt

» No end value, since system is not asymptotically stable
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Integrating systems

=1:
Singularitetsdiagram Stegsvar
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1st order systems

T>0

G =17

Example: Temperature dynamics in a tank:

q, 0o

4

b~~~

Transfer function from 6, to 61:

1

[ V
G(s) =
(%) 1+s%

q, 61
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1:a order systems

» Pole:
s=-1/T

» Step response:

Y(s) = Gls) = ﬁ

y(t) =K (1 — e_t/T)

» T is called time constant of the system

y(T)=(1—-e 1)K ~ 063K
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1:a order systems

K=1
Singularitetsdiagram Stegsvar

1

0.5

T=1 T=2T=5
E o % *—%

-0.5
1
1.5 1 -0.5 0 0.5

Re

» Step response speed decided by distance from pole to origin
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2nd order systems with real poles

K
_ T\ Ty >0
G(s) (1 +sT) (1 +sTy) 142>

Example: Temperature dynamics in coupled tanks:

ﬂf
6
W;E; Vi Transfer function from 6, to 6:
1
7, 61 G(s) =

(1+ s%) (1+ s%)

EVZ

q, 02
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2:a order systems with real poles

» Poles:
S = —1/T1, S = —l/Tz

» Step response:

1 K

Y() = G6)S = Sarema+ 1)

T, —t/T _T. —t /T
o (K2R T,
K(1—etT—Let!T), Ty=Tp=T

» Two time constants: T4, Ty
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2nd order systems with real poles

K=1
Singularitetsdiagram Stegsvar
1
1.2
0.5 1 T=1
c T=1 T=2 08
- 0 - 0.6 T=9
0.4
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0.2
1 0
1.5 1 0.5 0 0.5 0 5 10
Re t
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» Two poles gives softer and slower response than single pole

» equivalent time constant: T, = T1 + Ts

» If Ty > T, system behaves essentially as 1st order system

with time constant T}
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2nd order systems with complex poles

2
Koy

G(s) = ,
() s2 + 2 wos + 0}

wy>0,0<{<1

» w( = undamped frequency
» ¢ = relative damping

Example: Position dynamics for mechanical system

i Transfer function from F to z:

1
=1 Gs)= —2—
(s) s2+ s £

m

Complex poles if d < 2vkm
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2nd order systems with complex poles

Im
Poles: |

s=—Clwytiy/1-C2m, AR,

§ =cosp :' 9/ Re

Step response:

y@)=K|1- ! e @ sin (wo+/1 — {2t + arccos {
Neeres v
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2nd order systems with complex poles

K=1
Singularitetsdiagram
1 Do = 1.5 x\
Wy= 1X
0.5 N
wy=0.5 X N
E o
7
o= 0.5 X
0.5 7
wo=1X
-1 wy=1.5 x/
-2 -1 0
Re

» System speed decided by distance from poles to the origin

Stegsvar

15

0.5

o= 1.5600 =1 wp=0.5

15
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2nd order systems with complex poles

K=1
Singularitetsdiagram Stegsvar
1 %
“£=03 o ¢=03
7 =0.7
0.5
=09 ) =0 P
|
E o .
\ =0.9
=0.9 0.5
-0.5 Xé/ é« =0.7
X £=0.3
1 e 0
-1.5 -1 -0.5 0 0.5 1 0 5 10
Re t

» System damping decided by angle of the poles

15
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Systems with zeros

» Suppose the system is given by

(14 T.s)Go(s)

> Zeroins = —7
z

» Step response:
1
y(t) =Lt {Go(s);} + T, LY Go(s)}

» Weighted sum of impulse response and step response for
Go(s)
» Big impact if zero close to the origin (7 large)
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2nd order systems with zeros

1+ 8T,
Example: G(s) = ———=
P (s) (14 2s)2
Singularity Chart Step Response
1
0.5
T,=3 T,=-3
E o W—O © 05
05 0
-1 -0.5
-1 -0.5 0 0.5 0 5 10 15
Re Time
Dashed step response for Gy (s) 1
S)=——=
p p 0 (1 T 28)2

» Zeros affect initial response
» R.h.p. zeros gives inverse response behavior initially
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Systems with time delay

» Suppose the system is given by:
G(s) = Go(s)e™L, L>0
» Step response for part without delay Gy (s):
yolt) = £71 {Go(s)%}
» Step response with time delay:
y(t) =y —L)

(e=*L cannot be interpreted with (finitely many) poles and zeros)
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Interpretation of poles and zeros

Poles

» Depends only on A-matrix, e.g., on system inner dynamics
» Decides system:

» stability

» speed

» damping

Zeros

» Harder to interpret

» Depends on how inputs and outputs are connected to system
(i.e., depends on B, C, and D matrices)

» A zero in s = a cancels the signal e
» Influences mostly the initial step response behavior
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Processes that are difficult to control

Processes with:

» Poles in right half-plane (unstable)
» The bigger the real part (> 0) the harder to control

» Zeros in right half-plane (reversed response initially)
» The smaller real part (> 0) the harder to control

» Time delays
» The longer time delay, the harder to control
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Processes that are impossible to control

» Systems with poles and zeros in right half-plane (a,b > 0):

Gls) - Q6 —a)

P(s)(s —b)

» If @ = b: impossible to control
» If @ < 3b: impossible to control in practice

A

(OF Y
X o
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Examples

Bicycle with back wheel
steering X29,a/b ~ 4.33
a/b~0.7at1m/s
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Nonlinear systems

Different kinds of nonlinearities:

» Nonlinearities in actuators and sensors, e.g.,:
upper and lower limits on actuators and sensors
pumps and valves with nonlinear characteristics
friction and dead zones
nonlinear sensors for temperature, flow, concentration
» Nonlinear dynamics in the process, e.g.,:

» level dependent outflow speed in a tank

» temperature dependent reaction speed in reactor

» population dependent rate of growth
» Nonlinearities in the controller, e.g.,:

» on/off control

v vy VvYyy
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Example: Valve and pump characteristics

Flode

Snabbéppnande

Flode

u Spénnin,
Likprocentig 0 P &

Ventillage

Methods to compensate for nonlinearity:

» Compensate with table/mathematical function

» Feedback around static nonlinearity (better and more robust)
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Example: pH control

Want to control pH but measures concentration:

pH

Concentration

» Can be compensated for with table/mathematical function
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Example: Logistic growth model

x = population, r = net growth rate, £ = carrying capacity

100

80

60

Population

40

20

0
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Example: Hares and Lynxes

dt k c+ H’ -
dL aHL

= —dL L>
dt bc+H aL, 0

Population

0O 10 20 30 40 50 60 70
Timet [years|
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Linear vs nonlinear systems

Linear systems

» can equivalently be described with linear differential equation,
state-space model, transfer function, impulse response, or
step response

» are always in equilibrium at (x,u) =0
» global analysis — poles/zeros decide stability globally

Nonlinear systems

» described by nonlinear differential equation/state-space model
» can have many equilibria (stable/unstable) and limit cycles
» simulation, local analysis using linearization
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