Systems Engineering/Process Control L4

Input-output models

» Laplace transform
» Transfer functions
» Block diagram algebra

Reading: Systems Engineering and Process Control. 4.1-4.4
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Laplace transform

» Powerful mathematical tool to study and solve linear
differential equations

» Example:

Linear
system

What is output y(¢) given a specific input u(t)?
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Example: CSTR

q; CR,in
——r——3 CR,in cp
CrR | CP — CSTR [|—
[— )

q, Cp, CR

» Constant volume V and flow q
» First order reaction R — P
» Reactionrate rg = —rp = —kcg

Assume system is in equilibrium.
How does cp respond to unit step changes in cg ;,?



Example: CSTR

Mass balance:

In + Prod = Out + Acc

dc
qCRrn + Vrr = qcg + Vd—f'
de
Vip = gald
rp=qcp+ dr

Second order state-space model:

de
B - (g + k1) CR + SCRin

dt V V
@—kc .
dt_ 1¢R VP

How to solve equations with Laplace transform?



Laplace transform

Transforms a function f(¢) to another function F(s).

» f(t) is a function of time ¢ > 0

» F(s) is a function of the “complex frequency” s

Definition:

F(s) = L{F(t)} = /0 " Fe e



Some common functions (signals)

ft) =6()

fe)=1

Impulse

Step (constant signal)

Ramp

Exponential function
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The impulse function

» J(t) = impulse at time 0
» Also called Dirac function
» Infinitely high and infinitely thin, but with area 1

Example:

dv
==

Interpretation: “Injection of a unit volume at time 0”



Laplace transform of some common functions

Impulse:
24S(6) = / S()etdt = 1
0
Step:
o) —st] 1
1} = 1-e5tdt = | & =
= [T [ -4
Exponential function:
o) —(s+a)t |
L{e_“t}=/ e etdr = | L S
0 —(s+a) , Sta




Excerpt from collection of formulae p. 6:

Laplace transform F(s) | Time function £ ()

111 o(¢) Dirac function
1 .

2 5 1 Step function
1 .

3| = t Ramp function
S

6 1 e—at
st+a
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Some properties of the Laplace transform

Excerpt from collection of formulae p. 5:

Laplace transform F(s) | Time function f(¢)
1 | aFi(s) + fFs(s) af1(t) + Bf2(?) Linearity
8 | sF(s)— f(0) ') Derivation
i ¢-planet
1 t
12 | = F(s) / f(r)dr Integration
S 0 i t-planet
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More useful properties

Excerpt from collection of formulae p. 5:

Laplace transform F(s)

Time function £(¢)

14

e ¥F(s)

limsF(s)
s—0

0 t—a<0

{f(t—a) t—a>0

o )

Time delay

End point
theorem
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Compute system response using Laplace transform

1. Laplace transform all terms in the differential equation
» Use collection of formulae
2. Solve for signal Y (s)

3. Use inverse Laplace transform to find y(z)

» Divide into partial fractions first, if needed
» Use collection of formulae
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Example 1

Solve
y=-3y
with initial state y(0) = 5.
1. Laplace transform:
sY(s) —5=-3Y(s)
2. Solve for Y(s):
(s+3)Y(s)=5

5
s+ 3

Y(s) =
3. Inverse Laplace (transform nbr. 6):

y(t) = 5e™*
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Example 2: CSTR

Assume g =V =k =1, cg(0) =cp(0) =0, cr;n = 1 (step fcn):

CR = —20R + cR,in
Cp=Cgr—Cp
1. Laplace transform:
SCR(S) = —QCR (8) + CR,in (8)

sCp(s) = Cr(s) — Cp(s)
2. Solve for Cp(s):

1
CR(S) = mCR,in(s)
1 1 !
() = 51%0) = G O = GG v
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Example 2: CSTR

3. Inverse Laplace (transform nbr. 24):

cp(t) = % (1 +e Ze‘t)

0.6

05

041

0.2

01
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Transfer function

Linear
system

» Assume that all initial states are zero
» After Laplace transform, input-output relation can be written:

Y(s) =G(s)U(s)

G(s) is called the system transfer function
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Poles and zeros

Often transfer function is be written as:

G(s) = %, deg @ < degP

where Q(s) and P(s) are polynomials
Zeros: roots to Q(s) =0

Poles: roots to P(s) = 0 (characteristic equation)

Can be drawn in singularity diagram/pole-zero-diagram

» Poles: x

» Zeros: o

17/24



Example: CSTR

v

v

v

v

v

Input-output model: Cp(s) = 172 Crin(S)

Transfer function: G(s) = m

Zeros: 1 = 0 has no solutions
Poles: (s + 1)(s + 2) = 0 has solutions s; = —1, s = —2
Singularity diagram:

2

1
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Connection state-space form—transfer function

» Linear time invariant system on state-space form

%zAx+Bu

y=Cx+ Du

» Assume all initial states are zero: x(0) =0
» Laplace transform:

sX(s)=AX(s)+ BU(s)
Y(s)=CX(s)+DU(s)
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Connection state-space form—transfer function

» Solve for X (s):

(sI —A)X(s) =BU(s)
X(s)=(sI —A)"1BU(s)

» Insert into equation for Y (s):

Y(s)=C(sI —A)"1BU(s)+ DU (s)
- (C(sz —A)'B + D) Uls)

st )

» Denominator to G(s) given by det(sI — A)
» Poles to G(s) < eigenvalues of A

20/24



Comparison

State-space model

u(t) x=Ax+Bu

———
y=Cx+Du

y(?)

EE—

System response:

x(t) = eA'x(0)

teA(t—r) u
+ /0 Bu(r)dr
y(t) = Cx(t) + Du(t)

Stability:

Decided by eigenvalues to A.

Input-output-model

U(s) Y(s)

G(S) e —

System response:

Y(s) = G(s)U(s)

Stability:
Decided by poles to G(s).
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Block diagram computations with transfer functions

Serial connection:

Uls Y(s
_()> G1(s) Gs(s) _(l Y(s) = Go(s)G1(s)U(s)

Parallel connection:

Ul(s) Grle) Y(s)
}— Y(s) = (Gl(s) + Gy (s)) Uls)
Ga(s)
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Block diagram computations with transfer functions

Feedback:
U(s)

G1 (S)

Y(s)

—Ga(s)

Y(s) = Gu(s) (U(s) - Gz(S)Y(S))

Y(s)(1+ Gi(s)Ga(s)) = Gr(5)U (5)
s) = 76;1(8) (s)
1+ Gng(s)
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Example

Vv
U E Y; Y
H, G1 Go

—H,

Compute transfer function from U and Vto Y.
Y =Go(V+Y1)
Y1 =GE
E =H,U — HyY
Solve for Y:

_ GoG1H, U+ Go
B 1+ GyG1H, 1+ G2G1H,
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