
Systems Engineering/Process Control L4

Input-output models

◮ Laplace transform

◮ Transfer functions

◮ Block diagram algebra

Reading: Systems Engineering and Process Control: 4.1–4.4
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Laplace transform

◮ Powerful mathematical tool to study and solve linear

differential equations

◮ Example:
u y

Linear
system

What is output y(t) given a specific input u(t)?
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Example: CSTR

q, cR,in

q, cP, cR

cR cP

cR,in cP

CSTR

◮ Constant volume V and flow q

◮ First order reaction R → P

◮ Reaction rate rR = −rP = −kcR

Assume system is in equilibrium.

How does cP respond to unit step changes in cR,in?
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Example: CSTR

Mass balance:

In+ Prod = Out+ Acc

qcR,in + VrR = qcR + V
dcR

dt

VrP = qcP + V
dcP

dt

Second order state-space model:

dcR

dt
= −

( q

V
+ k1

)

cR +
q

V
cR,in

dcP

dt
= k1cR −

q

V
cP

How to solve equations with Laplace transform?
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Laplace transform

Transforms a function f (t) to another function F(s).

◮ f (t) is a function of time t ≥ 0

◮ F(s) is a function of the “complex frequency” s

Definition:

F(s) = L{ f (t)} =

∫ ∞

0

f (t)e−stdt
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Some common functions (signals)

t

f

f (t) = δ (t) Impulse

t

f

f (t) = 1 Step (constant signal)

t

f

f (t) = t Ramp

t

f

f (t) = e−at Exponential function
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The impulse function

◮ δ (t) = impulse at time 0

◮ Also called Dirac function

◮ Infinitely high and infinitely thin, but with area 1

Example:
dV

dt
= δ (t)

Interpretation: “Injection of a unit volume at time 0”
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Laplace transform of some common functions

Impulse:

L{δ (t)} =

∫ ∞

0

δ (t)e−stdt = 1

Step:

L{1} =

∫ ∞

0

1 ⋅ e−stdt =

[
e−st

−s

]∞

0

=
1

s

Exponential function:

L{e−at} =

∫ ∞

0

e−at ⋅ e−stdt =

[

e−(s+a)t

−(s+ a)

]∞

0

=
1

s+ a
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Excerpt from collection of formulae p. 6:

Laplace transform F(s) Time function f (t)

1 1 δ (t) Dirac function

2
1

s
1 Step function

3
1

s2
t Ramp function

...

6
1

s+ a
e−at
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Some properties of the Laplace transform

Excerpt from collection of formulae p. 5:

Laplace transform F(s) Time function f (t)

1 α F1(s) + β F2(s) α f1(t) + β f2(t) Linearity

8 sF(s) − f (0) f ′(t) Derivation

i t-planet

12
1

s
F(s)

∫ t

0

f (τ ) dτ Integration

i t-planet
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More useful properties

Excerpt from collection of formulae p. 5:

Laplace transform F(s) Time function f (t)

3 e−asF(s)

{

f (t− a) t− a > 0

0 t− a < 0
Time delay

14 lim
s→0
sF(s) lim

t→∞
f (t) End point

theorem
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Compute system response using Laplace transform

1. Laplace transform all terms in the differential equation
◮ Use collection of formulae

2. Solve for signal Y(s)

3. Use inverse Laplace transform to find y(t)
◮ Divide into partial fractions first, if needed
◮ Use collection of formulae
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Example 1

Solve

ẏ = −3y

with initial state y(0) = 5.

1. Laplace transform:

sY(s) − 5 = −3Y(s)

2. Solve for Y(s):
(s+ 3)Y(s) = 5

Y(s) =
5

s+ 3

3. Inverse Laplace (transform nbr. 6):

y(t) = 5e−3t
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Example 2: CSTR

Assume q= V = k = 1, cR(0) = cP(0) = 0, cR,in = 1 (step fcn):

ċR = −2cR + cR,in

ċP = cR − cP

1. Laplace transform:

sCR(s) = −2CR(s) + CR,in(s)

sCP(s) = CR(s) − CP(s)

2. Solve for CP(s):

CR(s) =
1

(s+ 2)
CR,in(s)

CP(s) =
1

s+ 1
CR(s) =

1

(s+ 1)(s+ 2)
CR,in(s) =

1

(s+ 1)(s+ 2)s
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Example 2: CSTR

3. Inverse Laplace (transform nbr. 24):

cP(t) =
1

2

(

1+ e−2t − 2e−t
)

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

t

c P
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Transfer function

u y
Linear
system

◮ Assume that all initial states are zero

◮ After Laplace transform, input-output relation can be written:

Y(s) = G(s)U(s)

G(s) is called the system transfer function

16 / 24



Poles and zeros

Often transfer function is be written as:

G(s) =
Q(s)

P(s)
, degQ ≤ deg P

where Q(s) and P(s) are polynomials

Zeros: roots to Q(s) = 0

Poles: roots to P(s) = 0 (characteristic equation)

Can be drawn in singularity diagram/pole-zero-diagram

◮ Poles: x

◮ Zeros: o
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Example: CSTR

◮ Input-output model: CP(s) =
1

(s+1)(s+2)CR,in(s)

◮ Transfer function: G(s) =
1

(s+ 1)(s+ 2)
◮ Zeros: 1 = 0 has no solutions

◮ Poles: (s+ 1)(s+ 2) = 0 has solutions s1 = −1, s2 = −2

◮ Singularity diagram:

Re

-3 -2 -1 0 1

Im

-2

-1

0

1

2
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Connection state-space form–transfer function

◮ Linear time invariant system on state-space form

dx

dt
= Ax + Bu

y= Cx + Du

◮ Assume all initial states are zero: x(0) = 0

◮ Laplace transform:

sX (s) = AX (s) + BU(s)

Y(s) = CX (s) + DU(s)
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Connection state-space form–transfer function

◮ Solve for X (s):

(sI − A)X (s) = BU(s)

X (s) = (sI − A)−1BU(s)

◮ Insert into equation for Y(s):

Y(s) = C(sI − A)−1BU(s) + DU(s)

=
(

C(sI − A)−1B + D
)

︸ ︷︷ ︸

G(s)

U(s)

◮ Denominator to G(s) given by det(sI − A)
◮ Poles to G(s) Z[ eigenvalues of A
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Comparison

State-space model

u(t) y(t)
ẋ=Ax+Bu

y=Cx+Du

System response:

x(t) = eAtx(0)

+

∫ t

0

eA(t−τ )Bu(τ ) dτ

y(t) = Cx(t) + Du(t)

Stability:

Decided by eigenvalues to A.

Input-output-model

U(s) Y(s)

G(s)

System response:

Y(s) = G(s)U(s)

Stability:

Decided by poles to G(s).
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Block diagram computations with transfer functions

Serial connection:

U(s)
G1(s) G2(s)

Y(s)
Y(s) = G2(s)G1(s)U(s)

Parallel connection:

U(s)
G1(s)

G2(s)

Y(s)
Σ Y(s) =

(

G1(s) + G2(s)
)

U(s)
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Block diagram computations with transfer functions

Feedback:
U(s)

G1(s)

−G2(s)

Y(s)
Σ

Y(s) = G1(s)
(

U(s) − G2(s)Y(s)
)

Y(s)
(

1+ G1(s)G2(s)
)

= G1(s)U(s)

Y(s) =
G1(s)

1+ G1G2(s)
U(s)
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Example

Σ Σ
U E

V
YY1

G1 G2

−H2

H1

Compute transfer function from U and V to Y.

Y = G2(V + Y1)

Y1 = G1E

E = H1U − H2Y

Solve for Y:

Y =
G2G1H1

1+ G2G1H2
U +

G2

1+ G2G1H2
V
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