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Single Layer Neural Networks
One Neuron

* One neuron

re€ R we R, beR, f(x) =s(w'z+b)
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@ Project supervision from
o Mathematics, Mathematical Statistics, Automatic Control.

@ Project plan. An A4-paper prepared after consulting the
supervisor. Send to course responsible by January 31.
Use email with subject line “FRT095”.

@ Written report
@ Oral presentation (shared among all group members)

@ Opposition (all team members together)
Written opposition report

@ 4 persons per project (possibly less)
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@ Statistical modeling from data (static black boxes)
@ Singular Value Decomposition (SVD)
@ Principal Component Analysis (Factor Analysis)
@ Neural Networks / Machine learning
@ Dynamic experiments (dynamic black boxes)
o Step response
o Frequency response
o Correlation analysis
@ Gray boxes
o Prediction error methods
@ Differential-Algebraic Equations revisited
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Single Layer Neural Networks
Several Neurons

« Several parallell neurons
z € R%y€R"BeR,W -k x dmatrix
y=s(Wz+ B)

» Elementwise smooth
thresholding — s

LUND
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Modelling in three phases:

@ Problem structure
@ Formulate purpose, requirements for accuracy
@ Break up into subsystems — What is important?

Q Basic equations
@ Write down the relevant physical laws
@ Collect experimental data
@ Test hypotheses
o Validate the model against fresh data

© Model with desired features is formed

@ Put the model on suitable form.

(Computer simulation or pedagogical insight? )
@ Document and illustrate the model
@ Evaluate the model: Does it meet its purpose?
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Components for deep lear:

« One neuron

— Example: Logistic regression

— Classification model (x feature vector,
(w,b) parameters, s smooth thresholding

re€ R weRLbeR, f(x) =s(wz+b)
. ) 1
Logistic regression s(z) =
1+e®

— ML estimate of parameters (w,b) is a
convex optimization problem

L
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min - Sw w+C E log(1+ e ).
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Deep Neural Networks
Many layers

However

Naively implemented
would give to many
parameters

Example

1M pixel image
1M hidden layers

10'2parameters between
each pairs of layers

UNIVERSITY



@ Statistical modeling from data (static black boxes)
@ Singular Value Decomposition (SVD)
@ Principal Component Analysis (Factor Analysis)
@ Neural Networks / Machine learning
@ Dynamic experiments (dynamic black boxes)
@ Step response
@ Frequency response
@ Correlation analysis
o Gray boxes
@ Prediction error methods
@ Differential-Algebraic Equations revisited

Deep Dream version

7
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Step response

Basic idea of system identification

u &
£y S — A tank which attenuates flow variations in g;. Characterization
of the tank system:

Measure U and y. Figure out a model of S, consistent with
measured data. l q1

Step response for the tank «+—————
Important aspects: A
@ We can only measure the u and y in discrete time points j @
(sampling). Can be natural to use the discrete-time e Can give idea of the dominant time constant, static
models. reinforcement, character (overshoot or not)
@ The system is affected by interference and measurement @ Input: g1
errors. We may need to signal models for dealing with this. @ Output: g2 and/or A

@ Internal variables / conditions: A
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Frequency response How light affects pupil area Bode-diagram for pupil
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Correlation analysis “ Estimated and actual impulse responses

Can we estimate the impulse response with other inputs? Correlation analysis for ﬁ (in- and out-put data) 03
@ Impulse response formula in discrete time (T' =1, v = —— 025
noise): A B
1 0.2
o]
¥ = > grult—k) +o(t) ol 015
k=1 -1t Vi
0.1
@ If v white noise with Ev? = 1, then oo s 0 s 1 0 13 0 1 10 i
tid (sek) 0051 \ /
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@ Statistical modeling from data (static black boxes)

Make experiments with conditions similar to the conditions in o Singular Value Decomposition (SVD) Find the unknown parameters 6 by optimization:
which the model is to be used! o Principal Component Analysis (Factor Analysis) min 56,6 — y(0)
(Models from step response can be expected to work best on @ Neural Networks / Machine learning 0 %
the stage.) @ Dynamic experiments (dynamic black boxes)

W7 f ) o Step response Here y(¢) is the measured output at time ¢ and y(¢, 6) is the
Save Sl data for model validation, i.e. check the model with o Frequency response predicted output based on past measurements using a model
data set different from the one that generated the model! o Correlation analysis with parameter values 6.

@ Gray boxes
o Prediction error methods
@ Differential-Algebraic Equations revisited
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Prediction Error Method with Repeated Simulation Population dynamics / Ecology

Population dynamics

N7 number of lynx, Ny number of hares

160
i 2 d
For a nonlinear grey-box model o ENl(t) = (A1 —71)N1(t) + @1 N1(t) N2 (2)
0= F(x,x,t,6) 120 d
—Ns(t) = (A2 — ¥2)N1(t) — aeN1(t)No(t
¥(t) = h(x,,6) " 7 V2() = (A2 = 72)Na(t) — a2 N1 () N2 (1)
the unknown parameters 6 could be determined by the 5 ¥ Simulation:
prediction error method T @ :

min [[5(2,6) — ¥(2)l|

where the output prediction (¢, 8) is computed by simulation.

0 -
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(Repeated simulation for different values of 6 could however be

very time-consuming.) Variations in the number of lynx (solid) and hares (dashed) in

Canada. Can you predict the periodic variations?
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Mixing tanks in Skéarblacka paper factory

A

T
gt

A linear transfer function of three series-connected mixing
1
tanks has the form GO
To determine 6, radioactive lithium is added in A. Radioactivity
was then measured by B as a function of time.
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Impulse response
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In the lower picture, 8 has been chosen to adapt to the impulse
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Grey Models — the best of both worlds

@ White boxes: Physical laws provide some insight
@ Black boxes: Statistics estimates complex relationships

@ Gray boxes: Combine simplicity with insight
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