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Modelling in three phases:

1 Problem structure

Formulate purpose, requirements for accuracy
Break up into subsystems — What is important?

2 Basic equations

Write down the relevant physical laws
Collect experimental data
Test hypotheses
Validate the model against fresh data

3 Model with desired features is formed

Put the model on suitable form.
(Computer simulation or pedagogical insight? )
Document and illustrate the model
Evaluate the model: Does it meet its purpose?
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Implementation

Experiment Synthesis

Analysis

Matematical model

Idea/Purpose

specification
and requirement  
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Lecture 2

Statistical modeling from data (static black boxes)

Singular Value Decomposition (SVD)
Principal Component Analysis (Factor Analysis)

Neural Networks / Machine learning

Dynamic experiments (dynamic black boxes)

Step response
Frequency response
Correlation analysis

Gray boxes

Prediction error methods
Differential-Algebraic Equations revisited
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Components for deep learning

• One neuron
– Example: Logistic regression
– Classification model (x feature vector, 

(w,b) parameters, s smooth thresholding

– Logistic regression

– ML estimate of parameters (w,b) is a 
convex optimization problem

x 2 R

d
, w 2 R

d
, b 2 R, f(x) = s(wT

x+ b)

s(z) =
1

1 + e�x
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LIBLINEAR: A Library for Large Linear Classification
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Appendix: Implementation Details and Practical Guide

Appendix A. Formulations

This section briefly describes classifiers supported in LIBLINEAR. Given training vectors
x

i

2 R

n

, i = 1, . . . , l in two class, and a vector y 2 R

l such that y

i

= {1,�1}, a linear
classifier generates a weight vector w as the model. The decision function is

sgn
�
w

T

x

�
.

LIBLINEAR allows the classifier to include a bias term b. See Section 2 for details.

A.1 L2-regularized L1- and L2-loss Support Vector Classification

L2-regularized L1-loss SVC solves the following primal problem:
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whereas L2-regularized L2-loss SVC solves the following primal problem:
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Their dual forms are:
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For L1-loss SVC, U = C and D
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= 0, 8i. For L2-loss SVC, U = 1 and D
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A.2 L2-regularized Logistic Regression

L2-regularized LR solves the following unconstrained optimization problem:
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Its dual form is:
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A.1Single Layer Neural Networks
One Neuron

• One neuron

x 2 R

d
, w 2 R

d
, b 2 R, f(x) = s(wT

x+ b)

Single Layer Neural Networks
Several Neurons

• Several parallell neurons

• Elementwise smooth
thresholding – s

x 2 R

d
, y 2 R

k
, B 2 R

d
,W � k ⇥ dmatrix

y = s(Wx+B)

Deep Neural Networks
Many layers

• However
• Naively implemented

would give to many
parameters

• Example

• 1M pixel image
• 1M hidden layers
• 1012 parameters between

each pairs of layers



Fun stu� before we get started
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Deep Dream version
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Lecture 2

Statistical modeling from data (static black boxes)

Singular Value Decomposition (SVD)
Principal Component Analysis (Factor Analysis)

Neural Networks / Machine learning

Dynamic experiments (dynamic black boxes)
Step response
Frequency response
Correlation analysis

Gray boxes

Prediction error methods
Differential-Algebraic Equations revisited
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Basic idea of system identification

S✲ ✲

u y

Measure U and y. Figure out a model of S, consistent with
measured data.

Important aspects:

We can only measure the u and y in discrete time points
(sampling). Can be natural to use the discrete-time
models.

The system is affected by interference and measurement
errors. We may need to signal models for dealing with this.
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Example

A tank which attenuates flow variations in q1. Characterization
of the tank system:

q1

q2

h

Input: q1
Output: q2 and/or h
Internal variables / conditions: h
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Step response

Step response for the tank 0 50 100 150 200 250 300 350 400
-0.05

0

0.05

0.1

0.15

Can give idea of the dominant time constant, static
reinforcement, character (overshoot or not)
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Frequency response

For good signal-to-noise ratio, an estimate of G(iω ) is obtained
directly from the amplitudes and phase positions of u, y

u(t) = A sinω t

y(t) = A!G(iω )! sin(ω t+ argG(iω ))
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How light affects pupil area
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Bode-diagram for pupil
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Correlation analysis

Can we estimate the impulse response with other inputs?

Impulse response formula in discrete time (T = 1, v =
noise):

y(t) =
∞∑

k=1

#ku(t− k) + v(t)

If v white noise with Ev2 = 1, then

Ryu(k) = Ey(t)u(t− k) = #k

Covariance Ryu estimated by N data points with

R̂Nyu(k) =
1

N

N∑

t=1

y(t)u(t− k)
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Example

Correlation analysis for 1
s2+2s+1

(in- and out-put data)
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Estimated and actual impulse responses
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Basic rules

Make experiments with conditions similar to the conditions in
which the model is to be used!

(Models from step response can be expected to work best on
the stage.)

Save some data for model validation, i.e. check the model with
data set different from the one that generated the model!
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Lecture 2

Statistical modeling from data (static black boxes)

Singular Value Decomposition (SVD)
Principal Component Analysis (Factor Analysis)

Neural Networks / Machine learning

Dynamic experiments (dynamic black boxes)

Step response
Frequency response
Correlation analysis

Gray boxes
Prediction error methods
Differential-Algebraic Equations revisited
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Prediction Error Methods

Find the unknown parameters θ by optimization:

min
θ
%ŷ(t,θ )− y(t)%

Here y(t) is the measured output at time t and ŷ(t,θ ) is the
predicted output based on past measurements using a model
with parameter values θ .
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Prediction Error Method with Repeated Simulation

For a nonlinear grey-box model

0 = F(ẋ, x, t,θ )

y(t) = h(x, t,θ )

the unknown parameters θ could be determined by the
prediction error method

min
θ
%ŷ(t,θ )− y(t)%

where the output prediction ŷ(t,θ ) is computed by simulation.

(Repeated simulation for different values of θ could however be
very time-consuming.)
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Population dynamics / Ecology

Variations in the number of lynx (solid) and hares (dashed) in
Canada. Can you predict the periodic variations?
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Population dynamics

N1 number of lynx, N2 number of hares

d

dt
N1(t) = (λ1 − γ 1)N1(t) +α 1N1(t)N2(t)

d

dt
N2(t) = (λ2 − γ 2)N1(t)−α 2N1(t)N2(t)

Simulation:
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Mixing tanks in Skärblacka paper factory

A

B

A linear transfer function of three series-connected mixing
tanks has the form 1

(sθ+1)3
.

To determine θ , radioactive lithium is added in A. Radioactivity
was then measured by B as a function of time.
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Impulse response

In the lower picture, θ has been chosen to adapt to the impulse
response of 1
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Grey Models — the best of both worlds

White boxes: Physical laws provide some insight

Black boxes: Statistics estimates complex relationships

Gray boxes: Combine simplicity with insight
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