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Matematisk Modellering FK (FRT095)

Course homepage:

http://www.control.lth.se/course/FRT095

◮ 4.5 credits (grade Pass or Fail)

◮ 4 h lectures (21/1-16 and 22/1-16)

◮ 100 h project



Project

◮ Project supervision from
◮ Mathematics, Mathematical Statistics, Automatic Control.

◮ Project plan. An A4-paper prepared after consulting the
supervisor. Sent to the course responsible by email by 5/2-16.

◮ Written report

◮ Oral presentation (shared among all group members)

◮ Opposition (all team members together)
Written opposition report

◮ 4 persons per project



Mathematical modelling — Lectures
◮ Why modelling?

◮ Natural sciences: Models for analysis (understanding)
◮ Engineering sciences: Models for synthesis (design)
◮ Specification: Model of a good technical solution

◮ Physical modeling (white boxes, today)
Model derived from fundamental physical laws

◮ Statistical methods (black boxes, today)
Model derived from measurement data

◮ Singular Value Decomposition (SVD)
◮ Principal Component Analysis (Factor Analysis)
◮ System Identification / Time Series Analysis

◮ Combination of the two (gray boxes, today or tomorrow)

◮ Bikes and Projects (tomorrow)



Engineering Ethics 1

◮ Relevant for the Pi-program?

◮ Ethical linear algebra?

◮ Ethical mathematical modelling?

1Thanks to Maria Henningsson Pi-02 for suggesting the next few slides.



“Our calculations show that...”

◮ What is behind the numbers?

◮ What assumptions are made?

◮ What limitations are there?

”Essentially, all models are wrong, but some are useful.”
- George E. P. Box.



Knowledge Gives You Power and Responsibility

◮ Your expert role will give you an advantage

◮ What assumptions are made?

◮ What limitations are there?



Example1: The CitiCorp Building



Example 2: The Parental Leave Insurance

What percentage of your income do you get?



Example 3: Mortgage Securities



Modelling in three phases:

1. Problem structure
◮ Formulate purpose, requirements for accuracy
◮ Break up into subsystems — What is important?

2. Basic equations
◮ Write down the relevant physical laws
◮ Collect experimental data
◮ Test hypotheses
◮ Validate the model against fresh data

3. Model with desired features is formed

◮ Put the model on suitable form.
(Computer simulation or pedagogical insight? )

◮ Document and illustrate the model
◮ Evaluate the model: Does it meet its purpose?



Implementation

Experiment Synthesis

Analysis

Matematical model

Idea/Purpose

specification
and requirement  



Physical Modeling

Physical modeling (white boxes)

◮ Analogies between different fields

◮ Dimensioned and dimensionless variables

◮ Subsystems and differential-algebraic equations



Principles and analogies: Hydraulics

Example 1. A hydraulic system:

pa
p1 p2 pb

Q1 Q2

Q3 Q4 Q5

Incompressible fluid. Pressures: pa, p1, p2, and p3.
Volume flows: Q1, Q2, Q3, Q4, and Q5.



Principles and analogies: Electrics

Example 2. An electrical system:

va v1
v2

vb

i1
i2

i3
i4 i5

R3 R4 R5

C1 C2

Potentials va , vb , v1, and v2

Currents i1 , i2, i3, i4, and i5



Principles and analogies: Heat

Example 3. A thermal system
(heat transfer through a wall):

Värmekap. Värmekap.

Ta

T1
T2

Tb

q3
q4 q5

C1 C2

Two elements with thermal capacities C1 and C2 separated by
insulating layers. Heat flows: q3 , q4 and q4

Temperatures: Ta , Tb , T1 and T2



Principles and analogies: Mechanics

Exempel 4. A mechanical system:

Fa

F1
F2

Fb

v1
v2 v3

k1

k2

d1
d2

m1 m2 m3

External forces: Fa and Fb

Velocities: v1, v2 and v3

Spring constants: k1 and k2

Damping constants: d1 and d2



Analogies

Analogies: hydraulic - electric - thermal - mechanical
Two types of variables:

A. Flow Variables

◮ volume flow
◮ power flow
◮ heat flow
◮ speed

B. Intensity variables

◮ pressure
◮ voltage
◮ temperature
◮ force

For both of them addition rules hold.



Analogies (cont’d)

Intensity variations

C ·
d

dt
(intensity) = flow

C ”capacitance”:
hydraulic: A/(ρg)
electrical: kapacitans
heat: thermal capacity
mechanical: inverse spring constant
Balance equations!
(More complicated if the capacitance is not constant.)



Analogies (cont’d)

Losses
flow = φ(intensity)

intensity = ϕ(flow)

Hydraulic: flow resistance
Electrics: resistance
Heat: thermal conductivity
Mechanics: friction

Often linear relationship in the electrical case - nonlinearly in the
other (may be approximated by linear for small changes of
variables)



More phenomena

Intensity variations

L ·
d

dt
(flow) = intensity

L ”inductance”
hydraucs: ρl/A
electrics: inductans
heat: –
mechanics: mass
balance equations!

(more complicated if the inductance is not constant.)



Energy flows

Can you make a general modeling theory based on flow and
intensity variables? Note the following.

pressure · flow = power
voltage difference · current = power

force · velocity = power
torque · angular velocity = power
temperature · heat flow = power · temperature



Physical modeling

Physical modeling (white boxes)

◮ Analogies between different fields

◮ Dimensioned and dimensionless variables

◮ Subsystems and differential-algebraic equations



Dimension analysis

Physical variables have dimensions. E.g.,

[density] = ML−3

[force] = M ·
L

T 2
= MLT −2

where
M = [mass], T = [time], L = [length]

Physical connections must be dimensionally “correct”.



Example: Bernoulli’s law

In Bernoulli’s law v =
√

2gh you have

[v/
√

gh] = LT −1(LT −2L)−0.5 = 1

v/
√

gh is an example of dimensionless quantity.



Dimensionless quantities and scaling

Some historical passanger ships:

◮ Kaiser Wilhelm the great, 1898, 22 knots, 200 m

◮ Lusitania, 1909, 25 knots, 240 m

◮ Rex, 1933, 27 knots, 269 m

◮ Queen Mary, 1938, 29 knots, 311 m

Note that the ratio (velocity)2/(length) is almost constant
Which physical phenomenon can be thought to be the cause?



2 min problem

Find the relationship (except for a scaling by a dimensionless
constant) between a pendulum period time and its mass, its length
and the acceleration of gravity g, i.e.,

t = f(m, l, g)



Lecture 1

Physical modeling (white boxes)

◮ Analogies between different fields

◮ Dimensioned and dimensionless variables

◮ Subsystems and differential-algebraic equations



Block models

Boxes linked by identifying the output of one with input of another.
Series connection of two state models gives a new state model.

replacements

u1 y1 = u2
y2

S1 S2

Block models (à la Simulink) often requires a predetermined
causality which can bee problematic. We want to be able to model
in general without first determining what is input and what is
output.



Examples of more general connection:

State models for two separate components:

φ̇1 = ω1 φ̇2 = ω2

J1ω̇1 = τ1 + τ2 J2ω̇2 = τ3 + τ4

Connection:

φ1 = φ2

τ2 = −τ3

The resulting model is not exactly a state model.



Linear differential-algebraic equations (DAE)

Eż = Fz + Gu

If E were non-singular, one could write

ż = E−1Fz + E−1Gu

which is a valid state model. If E is singular, variables have to be
eliminated to get a state equation. Using a DAE solver is often
better, since elimination can destroy sparsity.
Example:
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Nonlinear differential-algebraic equations (DAE)

Differential-algebraic equations, DAE

F (ż, z, u) = 0, y = H(z, u)

u: input, y: output, z: ”internal variable”

Special case: state model

ẋ = f(x, u), y = h(x, u)

u: input, y: output, x: state



Example: Pendulum
A pendulum with length L and position coordinates (x, y) moves
according to the equations

ẋ = u ẏ = v

u̇ = λx v̇ = λy L2 = x2 + y2

Differentiating the fifth equation gives

0 = ẋx + ẏy = ux + vy

Differentiating a second time gives

0 = u̇x + uẋ + v̇y + vẏ

= λ(x2 + y2) − gy + u2 + v2

= λL2
− gy + u2 + v2

and a third time

0 = L2λ̇ − 3gv

Finally, we have derivative expressions for all variables!
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