Project Course 2010

Finite-Wordlength Implementation of Controllers

e Computer arithmetic
- Floating-point arithmetic
- Fixed-point arithmetic

e Controller realizations

Based on material from
o K. J. Astrdm, B. Wittenmark: Computer-Controlled Systems, 3rd Ed., 1997.
e B. Lincoln: “Fixed-point controller implementation”, Lecture in Embedded Systems, 2004.

e A. Cervin, K-E. Arzén: “Implementation Aspects 2", Lecture in Real-Time Systems, 2008.

Floating-Point Arithmetic

Hardware-supported on modern high-end processors (FPUs)

Number representation:
+f x 2%

e f: mantissa, significand, fraction
e 2: base
e e: exponent

The binary point is variable (floating) and depends on the value of
the exponent

Dynamic range and resolution

Fixed number of significant digits

IEEE 754 Binary Floating-Point Standard

Used by almost all FPUs; implemented in software libraries

Single precision (Java/C float):

e 32-bit word divided into 1 sign bit, 8-bit biased exponent, and
23-bit mantissa (~ 7 decimal digits)

e Range: 27126 _ 2128

Double precision (Java/C double):

e 64-bit word divided into 1 sign bit, 11-bit biased exponent, and
52-bit mantissa (~ 15 decimal digits)

° Range: 2—1022 _ 21024

Supports Inf and NaN

What is the output of this program?

#include <stdio.h>

main() {
float al[] = { 10000.0, 1.0, 10000.0 };
float b[] = { 10000.0, 1.0, -10000.0 };
float sum = 0.0;
int 1i;

for (i=0; i<3; i++)
sum += al[i]l*b[i];

printf("sum = %f\n", sum);

© Dept. of Automatic Control, Lund

Remarks:

e The result depends on the order of the operations

¢ Finite-wordlength operations are neither associative nor
distributive

Arithmetic in Embedded Systems

Small microprocessors used in embedded systems typically do not
have hardware support for floating-point arithmetic

Options:
o Software emulation of floating-point arithmetic

— compiler/library supported
- large code size, slow

¢ Fixed-point arithmetic

- often manual implementation
- fast and compact

Fixed-Point Arithmetic

Represent all numbers (parameters, variables) using integers

Use binary scaling to make all numbers fit into one of the integer
data types, e.g.

e 8 bits (char, int8_t): [—128, 127]
o 16 bits (short, int16 t): [~32768, 32767]
o 32 bits (long, int32_t): [—2147483648, 2147483647]

Challenges

Must select data types to get sufficient numerical precision

Must know (or estimate) the minimum and maximum value of
every variable in order to select appropriate scaling factors

Must keep track of the scaling factors in all arithmetic
operations

Must handle potential arithmetic overflows

© Dept. of Automatic Control, Lund

Fixed-Point Representation
In fixed-point representation, a real number x is represented by an
integer X with N = m + n + 1 bits, where

e N is the wordlength
e m is the number of integer bits (excluding the sign bit)

e n is the number of fractional bits

0(j1j1/0}1|0|1]1

Sign bit Integer bits Fractional bits

“Q-format”: X is sometimes called a @m.n or @n number

Conversion to and from fixed point

Conversion from real to fixed-point number:
X :=round(x - 2")
Conversion from fixed-point to real number:

x:=X 2"

Example: Represent x = 13.4 using @4.3 format

X =round(13.4 - 2%) = 107 (= 01101011,)

A Note on Negative Numbers

In almost all CPUs today, negative integers are handled using
two’s complement: A “1” in the sign bit means that 2V should be

subtracted
Example (N = 8):

Binary representation Interpretation

00000000 0
00000001 1
01111111 127
10000000 -128

10000001 -127

1111111 -1

Range vs Resolution for Fixed-Point Numbers

A @m.n fixed-point number can represent real numbers in the

range
[—2m, 2™ — 27

while the resolution is
2—71
Fixed range and resolution

e n too small = poor resolution
e n too large = risk of overflow

© Dept. of Automatic Control, Lund

Fixed-Point Addition/Subtraction

Two fixed-point numbers in the same @m.n format can be added

or subtracted directly

The result will have the same number of fractional bits

z=x+y & Z=X+Y

e The result will in general require N + 1 bits; risk of overflow

Example: Addition with Overflow
Two numbers in Q4.3 format are added:
x=1225 = X =098

y=1475 = Y=118

Z=X+Y =216
This number is however out of range and will be interpreted as

216 —256=—-40 = 2z=-5.0

Fixed-Point Multiplication and Division

If the operands and the result are in the same Q-format,
multiplication and division are done as

z=x-y & Z=(X-Y)/2"

z=xly & Z=(X-2")/Y

Double wordlength is needed for the intermediate result
Division by 2" is implemented as a right-shift by n bits
Multiplication by 2" is implemented as a left-shift by n bits
The lowest bits in the result are truncated (round-off noise)
Risk of overflow

© Dept. of Automatic Control, Lund

Example: Multiplication
Two numbers in @5.2 format are multiplied:
x=625 = X =25
y=475 = Y =19

Intermediate result:
X - Y =475

Final result:
Z =475/2>=118 = 2z=295

(exact result is 29.6875)

Multiplication of Operands with Different Q-format

In general, multiplication of two fixed-point numbers @m.n; and
®@mgq.ns gives an intermediate result in the format

Qmi+mg.ni+ns

which may then be right-shifted n,+ne—ns steps and stored in the
format

Qms.ng

Common case: ny, = nz = 0 (one real operand, one integer
operand, and integer result). Then

Z=(X Y)/2"

Implementation of Multiplication in C

Assume @4.3 operands and result

#include <inttypes.h>
#define n 3

int8_t X, Y, Z;
intl6_t temp;

temp = (intl6_t)X * Y;
temp = temp >> n;
Z = temp;

/%
/%
/%
/%

/%
/%
/%

define int8_t, etc. (Linux only)
number of fractional bits
Q4.3 operands and result
Q9.6 intermediate result

cast operands to 16 bits and multiply
divide by 2°n
truncate and assign result

*/
*/
*/
*/

*/
*/
*/

© Dept. of Automatic Control, Lund

Implementation of Multiplication in C with Rounding Implementation of Division in C with Rounding
and Saturation

#include <inttypes.h> /* define int8_t, etc. (Linux only) */
#defi 3 * b ff ti 1 bit *
#include <inttypes.h> /* defines int8_t, etc. (Linux only) */) etine o /* number of fractional bits /
. . . int8_t X, Y, Z; /* Q4.3 operands and result */
#define n 3 /* number of fractional bits */ intl16_t temp; /* Q9.6 intermediate result */
int8_t X, Y, Z; /* Q4.3 operands and result */ - Ps ’
int16_t temp; * Q9.6 int diat 1t *
LISt temp; /* Q tntermediate resu / temp = (intl6_t)X << n; /* cast operand to 16 bits and shift x/
t =t + (Y >> 1), * Add Y/2 to gi t di *
temp = (intl6_t)X * Y; /* cast operands to 16 bits and multiply */ emp emp +) / /2 to glye'c?rrec rounolng /
. . temp = temp / Y; /* Perform the division (expensive!) x/
temp = temp + (1 << n-1); /* add 1/2 to give correct rounding */)
. © Z = temp; /* Truncate and assign result */
temp = temp >> n; /* divide by 2°n */
if (temp > INT8_MAX) /* saturate the result before assignment */
Z = INT8_MAX;
else if (temp < INT8_MIN)
Z = INT8_MIN;
else
Z = temp;
Realizations Direct Form

A linear controller The input-output form can be directly implemented as

bo+ bzt +...+ bz
= k) = biy(k—1) — u(k —
Hz) = 3o u(k) ; y(k —1i) ;a u(k —i)
can be realized in a number of different ways with equivalent input- « Nonminimal (all old inputs and outputs are used as states)

output behavior, e.g. " : .-
P g e Very sensitive to roundoff in coefficients

e Direct form o Avoid!
e Companion (canonical) form
e Series (cascade) or parallel form

© Dept. of Automatic Control, Lund

Companion Forms

E.g. controllable or observable canonical form

(—a1

—AQp—1

—a,)

1
1 0 0 0 0
x(k+1)=| 0 1 0 0 | x(k)+ | . |xk)
' 0
\ O O 1 0)
u(k) = (bl by bn] x(k)

e Same problem as for the Direct form
¢ Very sensitive to roundoff in coefficients
¢ Avoid!

Pole Sensitivity

How sensitive are the poles to errors in the coefficients?

Assume characteristic polynomial with distinct roots. Then

n

A(z) =1- Zakz_k = H(l —p;izt)

Jj=1

Pole sensitivity:
op;
8ak

The chain rule gives

0A(2) Op; _ 0A(2)
Gpi Oak B 8ak
Evaluated in z = p; we get
opi prt

day H;l:l,j;ei(l’i —P;)

e Having poles close to each other is bad
e For stable filter, a, is the most sensitive parameter

Better: Series and Parallel Forms

Divide the transfer function of the controller into a number of first-
or second-order subsystems:

—> H1(2)
—» H(z) —» —» Hi(z)—» Ho(z) > »(+
Direct Form Series Form —> Hz(2)
Parallel Form

¢ Try to balance the gain such that each subsystem has about
the same amplification

© Dept. of Automatic Control, Lund

Example: Series and Parallel Forms

2t —2.132% + 2.35122 — 1.493z + 0.5776

C(z) = Direct
(8) = i 39,5 139972 —2.3012 + 05184 (Direct)
B (22 — 1.635z + 0.9025> <22 —0.4944z + 0.64) (Serios)
T\ 22-1.7122+0.81 22 — 1.488z + 0.64
_,, 5396246302 646624907 (Parallel)

22 —1712z2+0.81 22 —1.488z+ 0.64

Direct form with quantized coefficients (N = 8, n = 4):

Bode Diagram

40

20f

Magnitude (dB)

— C(2)
—— C(z) direct form N=8

-20

-45 |
-90

Phase (deg)

-135
-180

-225 & —
10 10 10

Frequency (rad/sec)

Pole-Zero Map

0.8 ©
0.6
0.4

0.2

Imag Axis
o
X

-0.2

-0.4

-0.6

-0.8

0 0.5 1
Real Axis

-1 -0.5

Series form with quantized coefficients (N = 8, n = 4):

Bode Diagram

30
20F

10p

Magnitude (dB)

O,
— C(2)
-10 f | — C(2) series form N=8

-20

45
-90

Phase (deg)

-135
-180

-225 — —
10 10 10

Frequency (rad/sec)

© Dept. of Automatic Control, Lund

Pole-Zero Map

1
0
0.5 e
% %
£
% X
[e]
-1
-1 -0.5 0 0.5 1

Real Axis

Jackson’s Rules for Series Realizations

How to pair and order the poles and zeros?
Jackson’s rules (1970):

e Pair the pole closest to the unit circle with its closest zero.
Repeat until all poles and zeros are taken.

e Order the filters in increasing or decreasing order based on
the poles closeness to the unit circle.

This will push down high internal resonance peaks.

Well-Conditioned Parallel Realizations

Assume n, distinct real poles and n. distinct complex-pole pairs

Modal (diagonal/parallel/coupled) form:

zi(k+1) = Aizi(k) + Biy(k) i=1,...,n,
vi(k+1) = [_"C; “’] vi(k) + [7:] yk) i=1,...,n

w(k) = Dy(®R) + Y 1(k) + D 87wk

Matlab: sysm = canon(sys, ’modal’)

Multiple eigenvalues require Jordan blocks

Possible Pole Locations for Direct vs Modal Form

Pole positions with N=6 bit, direct form Pole positions with N=6 bit, state space (coupled) form

Tt rr= Sy
{ 0.9 .
i

0.8

0.7h 0.7
0.6} 0.6}k
o | .
£05E gospiii
O.4r§ 0.4
0.3 \ 0.3
0.2 . 0.2
B e .
0 0
0 0.2 0.4 0.6 0.8 1

Real ' Real

© Dept. of Automatic Control, Lund

Short Sampling Interval Modification
In the state update equation
x(k+1) = Px(k) +Ty(k)
the system matrix ® will be close to I if 4 is small. Round-off
errors in the coefficients of ® can have drastic effects.
Better: use the modified equation
x(k+1) =x(k)+ (P —I)x(k) +Ty(k)

e Both & — I and I' are roughly proportional to A
- Less round-off noise in the calculations
e Also known as the §-form

Short Sampling Interval and Integral Action

Fast sampling and slow integral action can give roundoff problems:

I(k+1)=I(k) +e(k) - 1/T;
—_———

~0

Possible solutions:

e Use a dedicated high-resolution variable (e.g. 32 bits) for the
I-part

e Update the I-part at a slower rate

General problem for filters with very different time constants

A Unifying Framework for Finite Wordlength
Realizations

(Hilaire, Chevrel, Whidborn, IEEE Trans. Circuits & Systems, 2007)

Specialized implicit state-space form of a filter with input U,
intermediate variable T', state X, output Y:
JT(k+1)=MX(k)+ NU(k)
X(k+1)=KT(k+1)+ PX(k)+ QU (k)
Y(k)=LT(k+1)+RX(k)+ SU(k)

Covers 6-form, direct forms, cascade/parallel forms, lattice filters,
mixed q/¢, ...

Sensitivity towards coefficient quantization can be analyzed

Pulse-Width Modulation (PWM)

Poor D-A resolution (e.g. 1 bit) can often be handled by fast
switching between levels + low-pass filtering

The new control variable is the duty-cycle of the switched signal

1.5F ‘ ‘ ‘ ‘ ‘ ‘ ; PWM‘Output ‘ H
—— Filtered PWM Output
—— Desired Output
1= — — —r— A —
wPSEnly
SRy L
g A/ L
S h i
os| ja ju
U U NI =
-15 F
0 é z‘l é E; £O £2 £4 1‘6 1‘8 20

Time

© Dept. of Automatic Control, Lund

10

