
Project Course 2010

Finite-Wordlength Implementation of Controllers

• Computer arithmetic

– Floating-point arithmetic
– Fixed-point arithmetic

• Controller realizations

Based on material from

• K. J. Åström, B. Wittenmark: Computer-Controlled Systems, 3rd Ed., 1997.

• B. Lincoln: “Fixed-point controller implementation”, Lecture in Embedded Systems, 2004.

• A. Cervin, K.-E. Årzén: “Implementation Aspects 2”, Lecture in Real-Time Systems, 2008.

Floating-Point Arithmetic

Hardware-supported on modern high-end processors (FPUs)

Number representation:
± f $ 2±e

• f : mantissa, significand, fraction

• 2: base

• e: exponent

The binary point is variable (floating) and depends on the value of
the exponent

Dynamic range and resolution

Fixed number of significant digits

IEEE 754 Binary Floating-Point Standard

Used by almost all FPUs; implemented in software libraries

Single precision (Java/C float):

• 32-bit word divided into 1 sign bit, 8-bit biased exponent, and
23-bit mantissa ((7 decimal digits)

• Range: 2−126 − 2128

Double precision (Java/C double):

• 64-bit word divided into 1 sign bit, 11-bit biased exponent, and
52-bit mantissa ((15 decimal digits)

• Range: 2−1022 − 21024

Supports Inf and NaN

What is the output of this program?

#include <stdio.h>

main() {

float a[] = { 10000.0, 1.0, 10000.0 };

float b[] = { 10000.0, 1.0, -10000.0 };

float sum = 0.0;

int i;

for (i=0; i<3; i++)

sum += a[i]*b[i];

printf("sum = %f\n", sum);

}

cF Dept. of Automatic Control, Lund 1

Remarks:

• The result depends on the order of the operations

• Finite-wordlength operations are neither associative nor
distributive

Arithmetic in Embedded Systems

Small microprocessors used in embedded systems typically do not
have hardware support for floating-point arithmetic

Options:

• Software emulation of floating-point arithmetic

– compiler/library supported
– large code size, slow

• Fixed-point arithmetic

– often manual implementation
– fast and compact

Fixed-Point Arithmetic

Represent all numbers (parameters, variables) using integers

Use binary scaling to make all numbers fit into one of the integer
data types, e.g.

• 8 bits (char, int8_t): [−128, 127]

• 16 bits (short, int16_t): [−32768, 32767]

• 32 bits (long, int32_t): [−2147483648, 2147483647]

Challenges

• Must select data types to get sufficient numerical precision

• Must know (or estimate) the minimum and maximum value of
every variable in order to select appropriate scaling factors

• Must keep track of the scaling factors in all arithmetic
operations

• Must handle potential arithmetic overflows

cF Dept. of Automatic Control, Lund 2

Fixed-Point Representation

In fixed-point representation, a real number x is represented by an
integer X with N = m + n+ 1 bits, where

• N is the wordlength

• m is the number of integer bits (excluding the sign bit)

• n is the number of fractional bits

Sign bit Integer bits Fractional bits

0 00 11111

“Q-format”: X is sometimes called a Qm.n or Qn number

Conversion to and from fixed point

Conversion from real to fixed-point number:

X := round(x ⋅ 2n)

Conversion from fixed-point to real number:

x := X ⋅ 2−n

Example: Represent x = 13.4 using Q4.3 format

X = round(13.4 ⋅ 23) = 107 (= 011010112)

A Note on Negative Numbers

In almost all CPUs today, negative integers are handled using
two’s complement: A “1” in the sign bit means that 2N should be
subtracted

Example (N = 8):

Binary representation Interpretation

00000000 0

00000001 1
...

...

01111111 127

10000000 -128

10000001 -127
...

...

1111111 -1

Range vs Resolution for Fixed-Point Numbers

A Qm.n fixed-point number can represent real numbers in the
range

[−2m, 2m − 2n]

while the resolution is
2−n

Fixed range and resolution

• n too small [poor resolution

• n too large [risk of overflow

cF Dept. of Automatic Control, Lund 3

Fixed-Point Addition/Subtraction

Two fixed-point numbers in the same Qm.n format can be added
or subtracted directly

The result will have the same number of fractional bits

z= x + y \ Z = X + Y

z= x − y \ Z = X − Y

• The result will in general require N + 1 bits; risk of overflow

Example: Addition with Overflow

Two numbers in Q4.3 format are added:

x = 12.25 [X = 98

y = 14.75 [Y = 118

Z = X + Y = 216

This number is however out of range and will be interpreted as

216− 256 = −40 [z = −5.0

0 0 00

0 0 0

0 0 000

1 1 11

1 1 111

111

+

=

Fixed-Point Multiplication and Division

If the operands and the result are in the same Q-format,
multiplication and division are done as

z = x ⋅ y \ Z = (X ⋅ Y)/2n

z= x/y \ Z = (X ⋅ 2n)/Y

• Double wordlength is needed for the intermediate result

• Division by 2n is implemented as a right-shift by n bits

• Multiplication by 2n is implemented as a left-shift by n bits

• The lowest bits in the result are truncated (round-off noise)

• Risk of overflow
cF Dept. of Automatic Control, Lund 4

Example: Multiplication

Two numbers in Q5.2 format are multiplied:

x = 6.25 [X = 25

y = 4.75 [Y = 19

Intermediate result:
X ⋅ Y = 475

Final result:
Z = 475/22 = 118 [z = 29.5

(exact result is 29.6875)

00 0

0

0

0000 0 00 0

0 00 0

00 00 0

111 11

11 1

1

1 1 1 1

1 1

111$

=

Multiplication of Operands with Different Q-format

In general, multiplication of two fixed-point numbers Qm1.n1 and
Qm2.n2 gives an intermediate result in the format

Qm1+m2.n1+n2

which may then be right-shifted n1+n2−n3 steps and stored in the
format

Qm3.n3

Common case: n2 = n3 = 0 (one real operand, one integer
operand, and integer result). Then

Z = (X ⋅ Y)/2n1

Implementation of Multiplication in C

Assume Q4.3 operands and result

#include <inttypes.h> /* define int8_t, etc. (Linux only) */

#define n 3 /* number of fractional bits */

int8_t X, Y, Z; /* Q4.3 operands and result */

int16_t temp; /* Q9.6 intermediate result */

...

temp = (int16_t)X * Y; /* cast operands to 16 bits and multiply */

temp = temp >> n; /* divide by 2^n */

Z = temp; /* truncate and assign result */

cF Dept. of Automatic Control, Lund 5

Implementation of Multiplication in C with Rounding

and Saturation

#include <inttypes.h> /* defines int8_t, etc. (Linux only) */

#define n 3 /* number of fractional bits */

int8_t X, Y, Z; /* Q4.3 operands and result */

int16_t temp; /* Q9.6 intermediate result */

...

temp = (int16_t)X * Y; /* cast operands to 16 bits and multiply */

temp = temp + (1 << n-1); /* add 1/2 to give correct rounding */

temp = temp >> n; /* divide by 2^n */

if (temp > INT8_MAX) /* saturate the result before assignment */

Z = INT8_MAX;

else if (temp < INT8_MIN)

Z = INT8_MIN;

else

Z = temp;

Implementation of Division in C with Rounding

#include <inttypes.h> /* define int8_t, etc. (Linux only) */

#define n 3 /* number of fractional bits */

int8_t X, Y, Z; /* Q4.3 operands and result */

int16_t temp; /* Q9.6 intermediate result */

...

temp = (int16_t)X << n; /* cast operand to 16 bits and shift */

temp = temp + (Y >> 1); /* Add Y/2 to give correct rounding */

temp = temp / Y; /* Perform the division (expensive!) */

Z = temp; /* Truncate and assign result */

Realizations

A linear controller

H(z) =
b0 + b1z

−1 + . . .+ bnz
−n

1+ a1z−1 + . . .+ anz−n

can be realized in a number of different ways with equivalent input-
output behavior, e.g.

• Direct form

• Companion (canonical) form

• Series (cascade) or parallel form

Direct Form

The input-output form can be directly implemented as

u(k) =

n∑

i=0

biy(k− i) −

n∑

i=1

aiu(k− i)

• Nonminimal (all old inputs and outputs are used as states)

• Very sensitive to roundoff in coefficients

• Avoid!

cF Dept. of Automatic Control, Lund 6

Companion Forms

E.g. controllable or observable canonical form

x(k+ 1) =





−a1 −a2 ⋅ ⋅ ⋅ −an−1 −an

1 0 0 0

0 1 0 0
...

0 0 1 0





x(k) +





1

0
...

0





y(k)

u(k) =


 b1 b2 ⋅ ⋅ ⋅ bn



 x(k)

• Same problem as for the Direct form

• Very sensitive to roundoff in coefficients

• Avoid!

Pole Sensitivity

How sensitive are the poles to errors in the coefficients?

Assume characteristic polynomial with distinct roots. Then

A(z) = 1−
n∑

k=1

akz
−k =

n∏

j=1

(1− pj z
−1)

Pole sensitivity:
�pi
�ak

The chain rule gives

�A(z)

�pi

�pi
�ak

=
�A(z)

�ak

Evaluated in z= pi we get

�pi
�ak

=
pn−ki

∏n

j=1, j ,=i(pi − pj)

• Having poles close to each other is bad

• For stable filter, an is the most sensitive parameter

Better: Series and Parallel Forms

Divide the transfer function of the controller into a number of first-
or second-order subsystems:

+

Direct Form Series Form

Parallel Form

H(z)

H1(z)

H1(z)

H2(z)

H2(z)

• Try to balance the gain such that each subsystem has about
the same amplification

cF Dept. of Automatic Control, Lund 7

Example: Series and Parallel Forms

C(z) =
z4 − 2.13z3 + 2.351z2 − 1.493z+ 0.5776

z4 − 3.2z3 + 3.997z2 − 2.301z+ 0.5184
(Direct)

=
(z2 − 1.635z+ 0.9025

z2 − 1.712z+ 0.81

)(z2 − 0.4944z+ 0.64

z2 − 1.488z+ 0.64

)

(Series)

= 1+
−5.396z+ 6.302

z2 − 1.712z+ 0.81
+
6.466z− 4.907

z2 − 1.488z+ 0.64
(Parallel)

Direct form with quantized coefficients (N = 8, n = 4):
Bode Diagram

Frequency (rad/sec)

P
ha

se
 (

de
g)

M
ag

ni
tu

de
 (

dB
)

-20

0

20

40

C(z)
C(z) direct form N=8

10
3

10
4

10
5

-225

-180

-135

-90

-45

0

Pole-Zero Map

Real Axis

Im
ag

 A
xi

s

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 Series form with quantized coefficients (N = 8, n = 4):
Bode Diagram

Frequency (rad/sec)

P
ha

se
 (

de
g)

M
ag

ni
tu

de
 (

dB
)

-20

-10

0

10

20

30

C(z)
C(z) series form N=8

10
3

10
4

10
5

-225

-180

-135

-90

-45

0

cF Dept. of Automatic Control, Lund 8

Pole-Zero Map

Real Axis

Im
ag

 A
xi

s C(z)
C(z) cascade form N=8

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Jackson’s Rules for Series Realizations

How to pair and order the poles and zeros?

Jackson’s rules (1970):

• Pair the pole closest to the unit circle with its closest zero.
Repeat until all poles and zeros are taken.

• Order the filters in increasing or decreasing order based on
the poles closeness to the unit circle.

This will push down high internal resonance peaks.

Well-Conditioned Parallel Realizations

Assume nr distinct real poles and nc distinct complex-pole pairs

Modal (diagonal/parallel/coupled) form:

zi(k+ 1) = λ izi(k) + β iy(k) i = 1, . . . ,nr

vi(k+ 1) =




σ i ω i

−ω i σ i



 vi(k) +




γ i1

γ i2



 y(k) i = 1, . . . ,nc

u(k) = Dy(k) +

nr∑

i=1

γ izi(k) +

nc∑

i=1

δ Ti vi(k)

Matlab: sysm = canon(sys,’modal’)

Multiple eigenvalues require Jordan blocks

Possible Pole Locations for Direct vs Modal Form

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Real

Im
ag

Pole positions with N=6 bit, direct form

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Real

Im
ag

Pole positions with N=6 bit, state space (coupled) form

cF Dept. of Automatic Control, Lund 9

Short Sampling Interval Modification

In the state update equation

x(k+ 1) = Φx(k) + Γy(k)

the system matrix Φ will be close to I if h is small. Round-off
errors in the coefficients of Φ can have drastic effects.

Better: use the modified equation

x(k+ 1) = x(k) + (Φ − I)x(k) + Γy(k)

• Both Φ − I and Γ are roughly proportional to h

– Less round-off noise in the calculations

• Also known as the δ -form

Short Sampling Interval and Integral Action

Fast sampling and slow integral action can give roundoff problems:

I(k+ 1) = I(k) + e(k) ⋅ h/Ti
︸ ︷︷ ︸

(0

Possible solutions:

• Use a dedicated high-resolution variable (e.g. 32 bits) for the
I-part

• Update the I-part at a slower rate

General problem for filters with very different time constants

A Unifying Framework for Finite Wordlength

Realizations

(Hilaire, Chevrel, Whidborn, IEEE Trans. Circuits & Systems, 2007)

Specialized implicit state-space form of a filter with input U ,
intermediate variable T , state X , output Y:

JT(k+ 1) = MX (k) + NU(k)

X (k+ 1) = KT(k+ 1) + PX (k) + QU(k)

Y(k) = LT(k+ 1) + RX (k) + SU(k)

Covers δ -form, direct forms, cascade/parallel forms, lattice filters,
mixed q/δ , . . .

Sensitivity towards coefficient quantization can be analyzed

Pulse-Width Modulation (PWM)

Poor D-A resolution (e.g. 1 bit) can often be handled by fast
switching between levels + low-pass filtering

The new control variable is the duty-cycle of the switched signal

0 2 4 6 8 10 12 14 16 18 20

-1.5

-1

-0.5

0

0.5

1

1.5

Time

O
ut

pu
t

PWM Output
Filtered PWM Output
Desired Output

cF Dept. of Automatic Control, Lund 10

