
Process Control

Laboratory Exercise X

Implementation of a Batch Process Control System

Department of Automatic Control

Lund University

Last updated March 2010

Figure 1 The batch reactor.

1. Getting started

Login with lab_batch, no password. To start both JGrafchart and the simulation
write start in a terminal window (which you open by clicking the terminal icon in
the menu bar.) You may close the terminal window once you have run thestart.

Rather than starting from scratch, a JGrafchart file with some definitions and structure
is available inxml/lab3_start.xml. it is opened using the ’Open’ under the ’File’
menu or hittingCtrl-O when focus is on theJGrafchart window. (Double click on
thexml directory icon and then onlab3_start.xml By now, you should have the
following windows, See Figure 2:

• JGrafchart showing theTop:Lab3 workspace

• Plotter

• Tank Animation

• Client OpCom

1



If any of them should crash, use the following: To start JGrafchart write>JGrafchart.
To start the others write>start_sim in a terminal window.

Finally, ensure that the process is connected to a 230 V socket and to the lab PC via
serial cable. There is a switch on the side of the process. Make sure it is switched
on. A led at the front of the process is lit when the process is on. If the LED is green
everything is OK. If it is red, press the reset button on the side of the process. If the
LED still does not turn green, contact the lab assistant.

2. Introduction

In this laboratory exercise you will implement a sequential control system for a batch
reactor process, see Figure 1. You will also implement a discrete PI controller for
controlling the temperature of the reactor. The development of the control system
will be made in JGrafchart, a graphical programming language implemented in Java
and developed at the department. The control system will first be tested against a
simulation and then evaluated against the real process.

The process to be controlled is a batch reactor, which is to be run in the following
way: First an amount of reactant A is added with the use of a pump. Then thereactor
is heated and an endothermic reaction starts, which turns A into the product B. When
the reaction is ready the reactor is emptied using another pump. Once the reactor is
empty it needs to be cleaned before the next batch can be made. In the laboratory
exercise water is used as the reactant and product. An electric cooler simulates the
endothermic reaction.

Preparations

Before the laboratory exercise you should have read this manual and solved the
preparatoryexercises. Make sure to study and understand the introduction to JGrafchart
in Section A, prior to attending the lab.

3. Laboratory Equipment

The process consists of a small tank with an electrical heater. It has a number of
measurement and control signals, which are tied to variables in theTop workspace of
theLab3 XML-file opened in JGrafchart.

The electrical heater is on when the boolean variableHeat is 1 (true). In the bottom
of the tank there is a cooler, which is used to simulate the reaction. The cooling is
on when the boolean variableCool is 1. An agitator in the tank makes sure there
are no temperature gradients in the liquid. The agitator is started using the boolean
variableAgitator. There is one pump for filling the tank and one for emptying the
tank. They are controlled using the variablesInPump andOutPump.

It is also possible to start or stop the pump, cooler and agitator from theClient

Opcom window shown in Figure 2(d).

There are two real variables connected to transmitters in the process. TheLevel vari-
able is in the range 0–1, corresponding to 0–10 V from the level sensor (larger number
corresponds to higher water level).Temp is in the range 0–100, which corresponds to
0–100◦C.

2



(a) JGrafchart withTop: Lab3 workspace

(b) Plotter

(c) Tank Animation (d) Client OpCom

Figure 2 Windows of the graphical user interface.

3



The process has some interlocks built in, e.g. it is not possible to heat the tank if
the level is too low. In the case something prohibited takes place the process sets the
Error signal variable to 1 and the LED on the front of the process turns red. Ifthis
happens, try to resolve the cause and then press the reset button at the side of the
process. Ask the lab assistant if this fails.

4. Modeling and Simulation

We will control two states in the batch reactor: the water level and the temperature of
the water. The water level dynamics is the simplest to model.

4.1 Water Level Dynamics

Let us denote the water level as a function of time withh(t) in meters. The differential
equation is then

A
dh
dt

= qin −qout [m3/s], (1)

as the mass is conserved. Hereqin [m3/s] is the flow of water from the in-pump
andqout [m3/s] is the flow from the out-pump. The tank cross-section area isA =
0.062π m2. As the dynamics are simple there will be no need for advanced control,
simple on/off control of the pumps will suffice. The pumps have a maximum capacity
of 15 l/min, but this will not be fully exploited. The water level measurement from
the process is normalized,h(t)/hmax, so that it becomes a number between 0 and 1 in
JGrafchart.

4.2 Water Temperature Dynamics

Let us denote the temperature withT (t) [◦C]. In our simple model we will assume the
temperature is uniform throughout the tank. This is not completely true, but we will
use an agitator to make this assumption close to reality. The temperature dynamics
are modeled by energy balance, described below. The combined specificheat of the
water and the tank are represented by the constantc [J/kg◦C] and their combined
mass is denotedm [kg]. The heat conduction between the tank and room is modeled
by k [W/◦C]. Further, there is a heat sourceqheat [W] and a heat sinkqcool [W]. The
balance equation becomes

mc
dT
dt

= k · (Troom −T )+qheat −qcool(Troom −T ) [W]. (2)

The room temperatureTroom is approximately 20◦C. Notice that if the heater and
cooling is off the water temperatureT will tend to Troom, which makes sense. (2) is
only valid for temperatures below the boiling point and above the freezing point.

The coolingqcool(T ) is provided by aPeltier thermoelectric element. Its efficiency
depends on the temperature difference between the water and the room. Itgets more
efficient as the temperature of the water increases. When the temperature difference
is zero, the cooling is about 40 W. In the working temperature range, the dependence
is well described by a linear relation. The cooling is included in the lab to simulate
the endothermic chemical reactions.

The heater can deliver a maximum ofqheat = 150 W. It will be scaled according to

qheat = 150
u

100
[W],

4



whereu is our control and is a dimensionless number between 0 and 100.u is the
output from the controller we will design in JGrafchart.

As seen in (2) there are many physical parameters to determine. However,for our
purpose there is no need to measure each single parameter. Instead, as we know the
structure of the model, we can fit the model to some experimental data and get a
reasonable result. Step response experiments yield

τ · Ṫ +T = κ1+κ2 ·u [◦C] (3)

when the cooling is on, at normal room temperature, and the level is approximately
one cm over the agitator. The open-loop time-constantτ is 1075 seconds. The other
constants areκ1 =−4.33◦C andκ2 = 1.74◦C.

4.3 Simulation

As the temperature dynamics of the real system are relatively slow with a time-
constant of 1075 s, we will use a simulated model that runs ten times as fast during
the design phase of the controller. This avoids too much tedious waiting. The anima-
tion window, see Figure 2(c), shows the status of the simulated tank. It is alsoupdated
when running the real process.

The heat control signalu and the temperatureT are plotted in another window, see
Figure 2(b). The plots should be used to evaluate the controller performance. The
plotting can be halted by clickingStop Plot in Client Opcom, see Figure 2(d),
and started anew by clickingStart Plot.

JGrafchart communicates both with the real and the simulated process. JGrafchart
decides whether to simulate or talk to the real process by means of the booleanvari-
ableSimulation in theTop workspace of your JGrafchart controller file, shown in
Figure 2(a). IfSimulation is 1 the simulated model, running ten times as fast as the
real process, provides your controller with measurement signals. IfSimulation is
0 the real world process is used. The necessary time-scaling of parameters is done
automatically. (We will see later how to toggle this mode.)

5. Sequential Control

In this part of the laboratory exercise you will develop a sequence for controlling
the batch reactor. The sequence should be described as a Grafcet diagram and then
translated to JGrafchart. The sequence will be tested against the simulated process
and then evaluated against the real process.

Sequential Control of the Batch Reactor

The reactor is making batches over and over again. The making of one batch is out-
lined below. All buttons and variables live in theTop workspace, if nothing else is
explicitly stated.

1. The operator starts the batch by pressing theStartSequence button, which
sets the boolean variableStart to 1 while the button is depressed.

2. Once the start button has has been pressed, the reactor should be filled using
the in-pump, which is running as long as the boolean variableInPump is 1. The
filling should be stopped when the boolean variableSensor.Full (from the
Sensor workspace, which is a sub-workspace ofTop) becomes 1.

5



3. As soon as the in-pump is stopped, the agitator should be started by setting
Agitator to 1 and the heating controller should be turned on by settingCon-

trol_On to 1.

4. Heating control and agitation should be stopped when the operator presses the
buttonStopHeating, which assigns the boolean variableStopHeat the value
1. It is the responsibility of the operator to wait until a desired temperature is
reached, before pressing the button. When heating and agitation have stopped,
the tank should automatically be emptied by means of the out-pump, controlled
by the boolean variableOutPump. The out-pump should be turned off once
Sensor.Empty becomes 1.

5. The tank needs to be automatically Cleaned In Place (CIP) before the batch
sequence can be repeated. The CIP procedure consists in flushing and cooling
the tank: The tank should be filled until the variableSensor.Full becomes 1.
Subsequently, the agitator is started and the cooler is activated by settingCool

to 1. When temperature has dropped to 25◦C, agitations and cooling should
stop. Temperature measurements in units of◦C are available through the vari-
ableTemp. Next, the out-pump empties the tank untilSensor.Empty becomes
1. Finally, the out-pump is turned off. After this, execution should return to the
start state, where the process waits until the operator presses the start button
anew.

Note: It might happen in simulation, as well as in the real process, that the temper-
ature is below 25◦C already at the beginning of the CIP step. If this is the case, the
CIP step will only involve flushing of the tank.

Preparation Exercise 5.1 Draw a Grafcet diagram (pen and paper), which de-
scribes the sequence above. Use a macro step to implement the CIP.

JGrafchart is different from the Grafcet standard. You need to makesome adjustments
to the sequence to be able to use it in JGrafchart, cf. Section A.

Preparation Exercise 5.2 Translate your Grafcet sequence in Preparation Exer-
cise 5.1 to the programming language syntax of JGrafchart (still pen and paper). It
means that in this exercise you should write (draw) the exact code that is necessary
to run the control system. Use the exact names of the variables mentioned above. See
Section A for details of the JGrafchart language. Use the skeleton, provided in the
file xml/lab3_start.xml, shown in the left half of Figure 2(a).

Note: It is recommended that you use the blocks present in the skeleton. However, it
is fully possible to add or remove blocks and connections.

Note: Variables in sub-workspaces are accessible by lexical scoping or ’dot’-notation.
E.g., since theSensor workspace is a sub-workspace of theTop workspace, theFull
variable in theSensorworkspace is accessed bySensor.Full in theTopworkspace
and macro steps defined within it. You can writeSensor.Full in the body of the
CIP macro step of theTop workspace to access theFull variable of theSensor
workspace.

Programming and Simulation of the Control Sequence

Exercise 5.3 Implement a discrete level sensor in the Sensor workspace. You
access theSensor workspace by right-clicking on the corresponding rectangle in

6



Figure 3 Contents of theSensor workspace template

theTop workspace (see Figure 2(a)) and selectingShow/Hide Body. The contents
of the Sensor workspace template, shown in Figure 5, should now be visible in a
new window. Your task is to program a JGrafchart sequence, setting theboolean state
variablesFull andEmpty, using the real variableLevel (which is defined in theTop
workspace and available in theSensor workspace by its name,Level). TheFull
variable should be set to 1 if and only ifLevel >= 0.28 andEmpty should be 1 if
and only ifLevel <= 0.025.

Exercise 5.4 Implement your sequence from Preparation Exercise 5.2. Test it in
simulation. Compile the program by selectingCompile All from theExecutemenu
(or by using the tool bar). Start the simulation by selectingExecute from the same
menu (or tool bar). Don’t forget to press theStartSequence button to start one
batch, and theStopHeating button to start CIP. (Both are found on theTopworkspace.)

Note: Execution is stopped by selectingStop from theExecute menu.

Note: You have to re-compile and execute each time you make changes.

Note: The boolean variableSimulation, found in theTop workspace, should be
set to 1, which is the default. If you have changed it, press theSim_On button (Top
workspace) once your program is running.

Evaluation using the Real Process

When the sequence gives a satisfying result in simulation it is time to try it on the
real process.

Exercise 5.5 Make sure that the computer and the process are connected and that
the LED on the front of the process is green. Set the value ofSimulation (Top
workspace) to 0 by clicking theSim_Off button (alsoTop workspace) during execu-
tion to use the real process. You might need to calibrate the level sensor, which you
have implemented in theSensor workspace. TheEmpty level should correspond to
no (or very little) water in the tank and theFull level should correspond to water
approximately 2 cm above the agitator blades. Make adequate modifications in your
Sensor workspace for this to happen and evaluate the sequence on the real process.

6. Control of the Temperature

Until now, the temperature has been controlled by means of a Proportional controller
(P controller) with proportional gain 1000, making it behave like an on/off controller.
We will now investigate how control performance is affected by varying thepro-
portional gain of the P controller. Subsequently, the controller will be extended to
a Proportional–Integrating (PI) controller in order to achieve better control perfor-
mance (in terms of tracking, disturbance rejection and control signal activity).

7



P control

TheTopworkspace holds the sub-workspacePID, containing the macro stepP_Controller,
within which a P controller is implemented. Make sure you understand its implemen-
tation prior to proceeding.

ThePIDworkspace also contains thePI_Controllermacro step and logics to direct
execution to either the P or PI controller. ThePI_Controller step will be handled
later.

Exercise 6.1 Study how the gain K of the P controller influences the heating be-
havior. UseK = 4, 15, 200. Set the reference signalTref to 40 ◦C. Try to explain
the observed behavior.

Note: To update the controller parameters it might be necessary to click theSim_On

action button on theTop after changing the values.

Note: Some of the variables of thePID workspace are not used in this lab, since we
are not interested in a derivative part. Why are we not interested in derivative action?

PI control

For processes working around a stationary point corresponding to non-zero input
signal, P control results in a stationary control error. This error can bedecreased by
increasing the proportional gain. However, this is done at the expense of stability
margins and noise suppression. An attractive alternative to increasing thegain is to
introduce an integrator in the controller.

A continuous time PI controller has the transfer function:

U(s) = K

(

1+
1

sTi

)

E(s)

whereE(s) = Yr(s)−Y (s). The signals and constants are:

• U control signal

• Y process output

• Yr reference

• E control error

• K proportional gain

• Ti integral gain

To be able to implement this controller in a computer, the integrating parts must be
replaced by a discrete time approximation. Here this is done by assuming constant
control error between sample points. Introducing this approximation, one obtains the
following pseudo-code implementation (running once per sample period):

Ppart = K*(r-y)

v1 = Ppart + Ipart

if v1 <= umin:

u = umin

else if v1 >= umax:

u = umax

else:

u = v1

Ipart = I_Old+K*h/Ti*(r-y)

8



Figure 4 Contents of thePID workspace

Preparation Exercise 6.2 Implement the PI algorithm in JGrafchart (pen and pa-
per). UseTemp for the latest measurement (y) of the temperature. For parameters, use
the namesK, Ti, h. Calculate the nominal control signalv1 as the sum of the terms
Ppart andIpart, which represent the internal values of the controller’s proportional
and integral parts.

The P controller used until now, provides the blocks and interconnectionsneeded for
your PI implementation. Its JGrafchart implementation is shown in Figure 6.

Exercise 6.3 Implement your PI controller from Preparation Exercise 6.2 in the
designated macro step in thePID workspace (sub-workspace ofTop) in JGrafchart,
see Figure 6.

Note: The PI macro step already contains the P controller shown in Figure 6.

Note: Notice that the temperature controller will only start if the boolean variable
PID_On (Top workspace) is 1 and that the P controller (as opposed to the PI con-
troller) is used if the boolean variableI_On (Top workspace) is 0.

9



Figure 5 P controller for theP_Controller macro step

Test your PI controller

Exercise 6.4 Simulate the system with a PI controller parameterized byK = 15,
Ti = 2000,Td = 0 andh = 200. Study the behavior of the system. What happens if
the control signal saturates?

In order to avoid the phenomenon mentioned above, a termh/Tr*(u-v1), where
Tr is a positivetracking constant, can be added, when updatingIpart. This term
preventsIpart from continue growing if the control signal saturates.

Notice that the final control signalu is computed from a nominal control signalv1 in
the pseudo-code for the PI controller.

Preparation Exercise 6.5 The phenomenon mentioned above is called integrator
windup. Why does it occur and how does it affect the system? Modify your PI con-
troller (pen and paper) to include integral anti-windup.

Exercise 6.6 Change your PI controller sequence in JGrafchart to include the anti-
windup. The parameterTr is available on theControl workspace. What happens to
the control signal whenTr=200, 750, and 2500?

7. The Final Result

Exercise 7.1 As a final part of the laboration, run the entire batch sequence, in-
cluding the windup-protected PI controller, on the real process. Use thecontroller
parameters:

10



K = 15

Ti = 2000

h = 200

Tr = 750

(Don’t forget to set the variableSimulation (Topworkspace) to 0. Click theSim_Off
action button to change this.)

How reliable is the model of the system used for simulation?

8. Conclusions

During the laboratory exercise we have developed a small control program for a batch
reactor. The program contains both a sequential part and a PI controller for temper-
ature control. This mix of control loops and logic is very common and can be found
in all from highly complex industrial processes to electric domestic appliancessuch
as laundry machines.

11



A. Introduction to JGrafchart

JGrafchart is a Grafcet/SFC editor and execution environment developed at the De-
partment of Automatic Control, Lund University.

A.1 On-line Help

JGrafchart has an on-line help, which can be reached from the menu choice Help.
Help about any object in JGrafchart can also be found by pressing thespeech bubble
with an"i" on the toolbar. Once it has been pressed the marker arrow will become a
speech bubble with a"?". If the speech bubble with a"?" is placed over any object
and the mouse button is pressed information about the object will appear in a browser.
The browser may take some time to start. To go back to normal mode press the speech
bubble with an"i" once again. Use the help!

A.2 Workspaces

Grafcet sequence diagrams are created interactively using drag-and-drop from a palette
containing the different Grafcet language elements. The sequence diagrams are stored
on JGrafchart workspaces, see Figure 6.

Figure 6 JGrafchart with palette, menus, toolbar, and a workspace.

Workspaces can be stored to a file and loaded from a file. The file is storedusing the
XML format.

If multiple workspaces are used, only one of them is the current focus for menu
choices. This is indicated through a blue workspace border, rather thanthe ordinary
gray border. The focus is changed by clicking on a workspace. This also automati-
cally moves the workspace to the front.

On a workspace it is possible to select an object or an area containing multipleobjects
in the standard fashion. A selected object can be moved, cut to the clipboard, or
copied to the clipboard. The contents of the clipboard can be pasted to a workspace.

12



Grafcet objects are connected together graphically by clicking on the connection
stubs. A connection can be moved by selecting it and moving one of the greencorner
points. This is specially needed when a Grafcet object is connected to another object
that is above the first object.

A selected Grafcet object or connection is deleted using theDelete key.

A.3 Grafcet Elements

This version of JGrafchart supports the following Grafchart elements:steps, ini-
tial steps, transitions, parallel splits, parallel joins, macro steps, work space objects,
exception transitions, digital inputs, digital outputs, analog inputs, analog outputs,
socket inputs, socket outputs, internal variables (real, boolean, string, and integer),
action buttons, and free text for comments. Inputs and outputs have already been
configured for this lab, and are therefore not covered here.

Steps Grafcet steps have action blocks that may be made visible or hidden through
menu choices on the step menu that is obtained by double-clicking on the step, see
Figure 7. The name of a step is located on the left hand side and it can be changed
by click-and-edit. Step actions are entered as text strings, through theEdit step menu

Figure 7 Step with action block hidden and visible.

choice, which is found by right-clicking on the icon of the step. Multiple step actions
are separated by semi-colons.

Four different action types are supported. Stored actions (impulse actions) are exe-
cuted once when the step is activated. The syntax for stored actions is:
S "variable-or-output" = "expression";

Periodic actions (always actions) are executed periodically, once every scan cycle,
while the step is active. The syntax for periodic actions is:
P "variable-or-output" = "expression";

Exit actions (finally actions) are executed once, immediately before the step isdeac-
tivated. The syntax for exit actions is:
X "variable-or-output" = "expression";

Normal actions (level actions) associate the truth value of a digital output ora boolean
variable with the activation status of the step. The syntax for a normal action is:
N "output";

The expression syntax follows the ordinary Java syntax, with some minor exceptions.
One important exception is that the literal 0 is used both to represent the boolean
literal False and the integer literal 0. The context decides the interpretation.

The operators supported are: + (plus), - (minus), * (multiplication), / (division), !
(negation), & (and),| (or), == (equal), != (not equal), < (less than), > (greater than),
<= (less or equal), >= (greater or equal).

Expressions may contain name references to inputs, outputs, and variables. JGrafchart
uses lexical scoping based on workspaces. For example, a variable named X on

13



workspace W1 is different from a variable named X on workspace W2. References
between workspaces are expressed using dot-notation. For example, astep action in
a step on workspace W1 can refer to the variable Y on workspace W2 using W2.Y.

Initial Steps Initial steps are ordinary steps that are active initially when the exe-
cution of the sequence diagram starts. Initial steps may have actions in the same way
as ordinary steps.

Transitions Transitions represent conditions or events that should be true (1) in
order for the Grafcet to change state. The transition expression is represented by a text
string associated with the transition, see Figure 8. A transition expression is edited

Figure 8 Transition

through theEdit transition menu choice (right click on the icon of the transition).

The transition expression should return a boolean value. The expression syntax is the
same as for step actions with a few additions. The expression "stepName".x returns 1
if the step is active and 0 otherwise. The expression "stepName".t returnsthe number
of scan cycles since the step last was activated. A scan cycle is typically 10-50 ms.
The expression "stepName".s returns the absolute time, in seconds, since the step
last was activated. The expression /"boolean-variable-or-input" represents a positive
trigger event. It is 1 if the value of the variable or input was 0 in the previous scan
cycle and is 1 in the current cycle. Similarly, the expression\"boolean-variable-or-
input" represents a negative trigger event. For example, the expression(/y | \y) is
1 whenever the boolean variabley changes its value.

Parallel Splits and Joins Parallel branches are created and terminated with parallel
splits and parallel joins. The parallel objects only allow two parallel branches. If more
branches are needed, the parallel elements can be connected in series,see Figure 9.

Macro Steps A macro step represents a hierarchical abstraction. The macro step
contains an internal structure of steps, transitions, and macro steps represented on a
separate (sub-)workspace. The sub-workspace is made visible and hidden by double-
clicking on the macro step. The first step in the macro step is represented by aspecial
enter step. Similarly the final step of the macro step is represented by a special exit
step. Both the enter step and exit step are ordinary steps and may, e.g., have actions.
The situation is shown in Figure 10.

The sub-workspace of a macro step has a local name space lexically contained within
the name space of the macro step itself. For example, the sub-workspace ofthe macro
step M1 may itself contain a macro step named M1, without causing any ambiguities.

14



Figure 9 Parallel branching with three branches.

Figure 10 Macro step M2 with internal structure. The internal structure contains the enter
step S1 and the exit step S2.

Exception Transitions An exception transition is a special type of transition that
only may be connected to a macro step. The exception transition is connected on the
left hand side of the macro step. An ordinary transition connected to a macrostep does
not become enabled until the execution of the macro step has reached the exit step. An
exception transition, however, is enabled all the time while the macro step is active.
When the transition is fired the execution inside the macro step is terminated and
the step succeeding the exception transition becomes activated. Exception transitions
have priority over ordinary transitions in cases where both are fire-able. An exception
transition connected to a macro step is shown in Figure 11.

Internal Variables Internal variables are variables that can be both read from and
written to. Four types of variables are available: real variables, booleanvariables,
integer variables, and string variables. Associated with each variable areits value and
its name, see Figure 12. Both can be changed by click-and-edit.

Action Buttons An action button performs an action when clicked on during execu-
tion. The syntax of the action is the same as for stored actions of a step, see Figure 13.

15



Figure 11 An exception transition connected to macro step M2. The exception transition
will fire when M2 has been active longer than 5 scan cycles.

Figure 12 Boolean variable (left) and integer variable (right).

Multiple actions are written on one line separated by semi-colons.

Figure 13 Action Button with its action.

Workspace Object To easier organize the programs in JGrafchart one can use the
workspace object. A workspace object on the top level workspace contains a sub-
workspace that can be used just as the top level workspace.

Free Text Text comments can be added to a workspace by drag-and-drop of the
Free Text text string on the palette. By single-clicking on the text the text string can
be edited. By double-clicking on the text a menu is shown where it is possible to
change font, size, color, etc of the text.

A.4 Execution

Grafcet sequence diagrams are executed by a periodic thread associated with each
top-level workspace. The thread cyclically performs three operations:

1. Read Inputs. The values of the digital inputs are read.

2. Execute Diagram. All the transitions in the diagram are checked. Steps are
activated and deactivated.

16



3. Write Outputs. The values of the digital outputs are written.

Before a sequence diagram can be executed it must be compiled. This is done by
selectingCompile All from theExecute menu or by using the buttons on the toolbar,
see Figure 6.

Two types of problems may arise during compilation: parsing errors and symbol table
lookup errors. Parsing errors are actually detected already when the step actions and
transition expressions are entered. For example, the transition expression (y OR z)
would generate a parsing error. (The syntactically correct expression should be(y
| z)). Symbol table lookup errors occur if a name reference does not exist,e.g., if
there does not exist any variables namedy or z in the previous example. Both parsing
errors and symbol table lookup errors are indicated by a change in the text color of
the transition expression or step action from black to red. There will also bean error
message written in the field next to the stop button on the toolbar.

In the Execute Diagram part of the execution cycle the following operations are
performed. For each transition in the diagram, the transition expression is evaluated.
If it is 0, then the transition icon is changed to red. If it is 1, the transition icon is
changed to green. If, additionally, all steps preceding the transition are active, then
the steps preceding the transition is marked to become deactivated in the next cycle,
and all the steps succeeding the transition are marked to become activated in the next
cycle. When all transitions have been checked, the change of step state iseffectu-
ated. In addition to the things above, step actions are executed and the step timing
information is updated.

Programming in JGrafchart

Programming in JGrafchart is done by dragging and dropping object from the palette
in Figure 6 on to a workspace. The objects are connected by clicking on thestubs
of and object and drawing a line to the object it is to be connected with. The rules
of Grafcet has to be followed: A step cannot be connected to a step and so on. The
steps and transitions can be edited. Variables and inputs and outputs are defined by
dragging and dropping them on a workspace. After the function diagramhas been
built the workspace has to be compiled and if there are no errors the function chart
can be executed.

17


