Process Control
L aboratory Exercise X
Implementation of a Batch Process Control System

Department of Automatic Control
Lund University
Last updated March 2010

Y

Figurel The batch reactor.

1. Getting started

Login with 1ab_batch, no password. To start both JGrafchart and the simulation
write start in a terminal window (which you open by clicking the terminal icon in
the menu bar.) You may close the terminal window once you have rusittet.

Rather than starting from scratch, a JGrafchart file with some definitiahsteucture
is available inxm1/1ab3_start.xml. it is opened using the 'Open’ under the 'File’
menu or hittingCtr1-0 when focus is on théGraf chart window. (Double click on
the xml directory icon and then obab3_start.xml By now, you should have the

following windows, See Figure 2:

JGrafchart showing theTop: Lab3 workspace
Plotter
Tank Animation

Client OpCom

If any of them should crash, use the following: To start JGrafchatéwiGraf chart.
To start the others writestart_sim in a terminal window.

Finally, ensure that the process is connected to a 230 V socket and tb tR€ laia
serial cable. There is a switch on the side of the process. Make surenwitthed
on. A led at the front of the process is lit when the process is on. If tH2 isEgreen
everything is OK. If it is red, press the reset button on the side of theepsodf the
LED still does not turn green, contact the lab assistant.

2. Introduction

In this laboratory exercise you will implement a sequential control systembatch
reactor process, see Figure 1. You will also implement a discrete Pl dentiar
controlling the temperature of the reactor. The development of the coystdrs

will be made in JGrafchart, a graphical programming language implementedan Ja
and developed at the department. The control system will first be tesseasta
simulation and then evaluated against the real process.

The process to be controlled is a batch reactor, which is to be run in the fofow
way: First an amount of reactant A is added with the use of a pump. Theaahwor

is heated and an endothermic reaction starts, which turns A into the proodidh
the reaction is ready the reactor is emptied using another pump. Once ttw isac
empty it needs to be cleaned before the next batch can be made. In thatdapor
exercise water is used as the reactant and product. An electric cooldatamihne
endothermic reaction.

Preparations

Before the laboratory exercise you should have read this manual dvet dhe
preparatorgxercises. Make sure to study and understand the introduction to B@nafc
in Section A, prior to attending the lab.

3. Laboratory Equipment

The process consists of a small tank with an electrical heater. It has aenuwhb
measurement and control signals, which are tied to variables Foiheorkspace of
theLab3 XML-file opened in JGrafchart.

The electrical heater is on when the boolean vari@bket is 1 (true). In the bottom

of the tank there is a cooler, which is used to simulate the reaction. The cooling is
on when the boolean variab@®o1l is 1. An agitator in the tank makes sure there
are no temperature gradients in the liquid. The agitator is started using theiboole
variableAgitator. There is one pump for filling the tank and one for emptying the
tank. They are controlled using the variable®ump and0OutPump.

It is also possible to start or stop the pump, cooler and agitator fron¢thent
Opcom window shown in Figure 2(d).

There are two real variables connected to transmitters in the procedsevdievari-
ableisinthe range 0-1, corresponding to 0—-10 V from the level selasgef number
corresponds to higher water levelkmp is in the range 0—100, which corresponds to
0-100°C.

- Measurements Control Signals
Wit
Real 37.15 Real 0.307 Bool O Bool O Bool O
0 Temp Lewvel Heat Ag—ftatur ool
i Bool 0 Bool 0 Bool 1 Bool 1
S_Fill —
tart topHeat Control_Cn _0n imulation Plot
[————— W] Workspaces

O O O O O O

; | O O | O O

S_Heat —— i |mi O O O O
Sensor PID Sockets 12 P Logic
o Control Panel
i

StanSequence StopHeating |

; !

S_Empt —
P Update
Sim_Cn | Sim_off I
[————11] :
PN |-Part On |-Part Off]
- -
L Reset-PID

1

Temperature

(a) JGrafchart witlTop:

Lab3 workspace

&0
50
40
30
20
10
sl T T T T T T T T T T
—400 -350 -300 -250 -200 -150 -100 -50 0 50
Control
100
an
80
70
&0
50
40
20
20
10
s} T T T T T T T T T T
-400 -350 -200 -250 -200 -150 -100 -50 0 50
(b) Plotter
—| S— Start Agitator Stop Agitator
Start InPump Stop InPump
Start OutPump Stop OutPump
Start Plot Stop Plot
@ Start Simulation Stop Simulation
= Cooler On Cooler Off
Increase Control Decrease Control
et Quit Quit Server
QutPump: OFF
T Temperature: Water Level:
Cuuler:?FF)
Mode: Simulation OH 2 u. u D D u. D 2 5

(c) Tank Animation

(d) Client OpCom

Figure2 Windows of the graphical user interface.

The process has some interlocks built in, e.g. it is not possible to heat thef tan
the level is too low. In the case something prohibited takes place the pratsdhes
Error signal variable to 1 and the LED on the front of the process turns reklis|f
happens, try to resolve the cause and then press the reset button igetoé the
process. Ask the lab assistant if this fails.

4. Modeling and Simulation

We will control two states in the batch reactor: the water level and the tempeitu
the water. The water level dynamics is the simplest to model.

4.1 Water Level Dynamics

Let us denote the water level as a function of time it in meters. The differential

equation is then
dh

Aa = Qin — Yout [ms/s]; 1)

as the mass is conserved. Hejg [m3/g is the flow of water from the in-pump
and goy [M3/9) is the flow from the out-pump. The tank cross-section aref s
0.06°T m?. As the dynamics are simple there will be no need for advanced control,
simple on/off control of the pumps will suffice. The pumps have a maximumodigpa

of 15 I/min, but this will not be fully exploited. The water level measurementfro
the process is normalizeld(t) /hmax, SO that it becomes a number between 0 and 1 in
JGrafchart.

4.2 Water Temperature Dynamics

Let us denote the temperature witkt) [°C]. In our simple model we will assume the
temperature is uniform throughout the tank. This is not completely true, &uwtiil

use an agitator to make this assumption close to reality. The temperature dynamics
are modeled by energy balance, described below. The combined speeifiof the

water and the tank are represented by the constglhtkg’C] and their combined
mass is denotenh [kg|. The heat conduction between the tank and room is modeled
by k [W/°C]. Further, there is a heat sourg@y [W] and a heat sinkgoq [W]. The
balance equation becomes

dT

mca = K- (Troom—T) + 0heat — Aeool (Troom—T) [W]. 2
The room temperaturé.qom is approximately 20C. Notice that if the heater and
cooling is off the water temperatufie will tend to T;oom, Which makes sense. (2) is
only valid for temperatures below the boiling point and above the freeziirg.po

The coolingqeo (T) is provided by aPeltier thermoelectric element. Its efficiency
depends on the temperature difference between the water and the rgets. itore
efficient as the temperature of the water increases. When the tempeiiéenende

is zero, the cooling is about 40 W. In the working temperature range, tiendence

is well described by a linear relation. The cooling is included in the lab to simulate
the endothermic chemical reactions.

The heater can deliver a maximumapts = 150 W. It will be scaled according to

u
Oheat = 150@ W],

whereu is our control and is a dimensionless number between 0 anduli8Cthe
output from the controller we will design in JGrafchart.

As seen in (2) there are many physical parameters to determine. Hovigveur
purpose there is no need to measure each single parameter. Insteadkramuthe
structure of the model, we can fit the model to some experimental data and get a
reasonable result. Step response experiments yield

T-T+T=kKi+kKko-u [°C] (3)

when the cooling is on, at normal room temperature, and the level is dpat@ty
one cm over the agitator. The open-loop time-constast1075 seconds. The other
constants are; = —4.33°C andk, = 1.74°C.

4.3 Simulation

As the temperature dynamics of the real system are relatively slow with a time-
constant of 1075 s, we will use a simulated model that runs ten times as fagj du
the design phase of the controller. This avoids too much tedious waiting.riina-a

tion window, see Figure 2(c), shows the status of the simulated tank. It ispdsted
when running the real process.

The heat control signal and the temperatur€ are plotted in another window, see
Figure 2(b). The plots should be used to evaluate the controller perfoenahe
plotting can be halted by clickin§top Plot in Client Opcom, see Figure 2(d),
and started anew by clickirgtart Plot.

JGrafchart communicates both with the real and the simulated processclidstaf
decides whether to simulate or talk to the real process by means of the buaiean
ableSimulation in the Top workspace of your JGrafchart controller file, shown in
Figure 2(a). IfSimulation is 1 the simulated model, running ten times as fast as the
real process, provides your controller with measurement signadgmiflation is

0 the real world process is used. The necessary time-scaling of paransetione
automatically. (We will see later how to toggle this mode.)

5. Sequential Control

In this part of the laboratory exercise you will develop a sequencedotralling
the batch reactor. The sequence should be described as a Grafpatrdend then
translated to JGrafchart. The sequence will be tested against the simulateds
and then evaluated against the real process.

Sequential Control of the Batch Reactor

The reactor is making batches over and over again. The making of orfeibatat-
lined below. All buttons and variables live in tlTep workspace, if nothing else is
explicitly stated.

1. The operator starts the batch by pressingstteertSequence button, which
sets the boolean variab$eart to 1 while the button is depressed.

2. Once the start button has has been pressed, the reactor shoulddoesfitig
the in-pump, which is running as long as the boolean variadibamp is 1. The
filling should be stopped when the boolean variaddasor . Full (from the
Sensor workspace, which is a sub-workspaceTop) becomes 1.

3. As soon as the in-pump is stopped, the agitator should be started by setting
Agitator to 1 and the heating controller should be turned on by seftimg
trol_Onto 1.

4. Heating control and agitation should be stopped when the operatsepithe
buttonStopHeating, which assigns the boolean variaBleopHeat the value
1. It is the responsibility of the operator to wait until a desired temperature is
reached, before pressing the button. When heating and agitation hppedto
the tank should automatically be emptied by means of the out-pump, controlled
by the boolean variableutPump. The out-pump should be turned off once
Sensor.Empty becomes 1.

5. The tank needs to be automatically Cleaned In Place (CIP) before the batc
sequence can be repeated. The CIP procedure consists in flusiogaimg
the tank: The tank should be filled until the variaBlwsor . Full becomes 1.
Subsequently, the agitator is started and the cooler is activated by skttihg
to 1. When temperature has dropped t6Q@b5agitations and cooling should
stop. Temperature measurements in unitsS®are available through the vari-
ableTemp. Next, the out-pump empties the tank usSéhsor . Empty becomes
1. Finally, the out-pump is turned off. After this, execution should returneo th
start state, where the process waits until the operator presses theusitamt b
anew.

Note: It might happen in simulation, as well as in the real process, that the temper-
ature is below 2%C already at the beginning of the CIP step. If this is the case, the
CIP step will only involve flushing of the tank.

Preparation Exercise 5.1 Draw a Grafcet diagram (pen and paper), which de-
scribes the sequence above. Use a macro step to implement the CIP.

JGrafchart is different from the Grafcet standard. You need to make adjustments
to the sequence to be able to use it in JGrafchart, cf. Section A.

Preparation Exercise 5.2 Translate your Grafcet sequence in Preparation Exer-
cise 5.1 to the programming language syntax of JGrafchart (still pen gat)p#
means that in this exercise you should write (draw) the exact code thatessay

to run the control system. Use the exact names of the variables mentioned Sbe
Section A for details of the JGrafchart language. Use the skeletonidebin the

file xm1/1ab3_start.xml, shown in the left half of Figure 2(a).

Note: It is recommended that you use the blocks present in the skeleton. Hpwteve
is fully possible to add or remove blocks and connections.

Note: Variables in sub-workspaces are accessible by lexical scopingténdiation.
E.g., since th€ensor workspace is a sub-workspace of tee workspace, thEull
variable in theSensor workspace is accessed ®nsor .Full in theTop workspace
and macro steps defined within it. You can wi$lensor .Full in the body of the
CIP macro step of th&op workspace to access thall variable of theSensor
workspace.

Programming and Simulation of the Control Sequence

Exercise 5.3 Implement a discrete level sensor in the Sensor workspace. You
access theensor workspace by right-clicking on the corresponding rectangle in

Booll Boald

Full Empty
Figure3 Contents of th&ensor workspace template

the Top workspace (see Figure 2(a)) and selecthgw/Hide Body. The contents

of the Sensor workspace template, shown in Figure 5, should now be visible in a
new window. Your task is to program a JGrafchart sequence, settitmptilean state
variablesfull andEmpty, using the real variableevel (which is defined in th&op
workspace and available in tl$e@nsor workspace by its naméevel). TheFull
variable should be set to 1 if and onlylLievel >= 0.28 andEmpty should be 1 if
and only ifLevel <= 0.025.

Exercise 5.4 Implement your sequence from Preparation Exercise 5.2. Test it in
simulation. Compile the program by selectiignpile All from theExecute menu

(or by using the tool bar). Start the simulation by selectirgcute from the same
menu (or tool bar). Don't forget to press tlSeartSequence button to start one
batch, and the8topHeating button to start CIP. (Both are found on thep workspace.)

Note: Execution is stopped by selectisgop from theExecute menu.
Note: You have to re-compile and execute each time you make changes.

Note: The boolean variabl@imulation, found in theTop workspace, should be
set to 1, which is the default. If you have changed it, pressile On button Cop
workspace) once your program is running.

Evaluation using the Real Process

When the sequence gives a satisfying result in simulation it is time to try it on the
real process.

Exercise 5.5 Make sure that the computer and the process are connected and that
the LED on the front of the process is green. Set the valugiafilation (Top
workspace) to 0 by clicking theim_0ff button (alsdrop workspace) during execu-

tion to use the real process. You might need to calibrate the level sertsoh you

have implemented in th&ensor workspace. Th&mpty level should correspond to

no (or very little) water in the tank and ti®11 level should correspond to water
approximately 2 cm above the agitator blades. Make adequate modificatiomsrin y
Sensor workspace for this to happen and evaluate the sequence on the eadgro

6. Control of the Temperature

Until now, the temperature has been controlled by means of a Proportmmtablter
(P controller) with proportional gain 1000, making it behave like an ontfitioller.
We will now investigate how control performance is affected by varyingpiue
portional gain of the P controller. Subsequently, the controller will be eledrio
a Proportional-Integrating (PI) controller in order to achieve better cbpgrfor-
mance (in terms of tracking, disturbance rejection and control signaltggtiv

P control

TheTop workspace holds the sub-worksp&d®, containing the macro stép Controller,
within which a P controller is implemented. Make sure you understand its implemen-
tation prior to proceeding.

ThePID workspace also contains tRg_Controller macro step and logics to direct
execution to either the P or PI controller. The_Controller step will be handled
later.

Exercise 6.1 Study how the gain K of the P controller influences the heating be-
havior. UseK = 4, 15, 200. Set the reference sigriatef to 40°C. Try to explain
the observed behavior.

Note: To update the controller parameters it might be necessary to clickithedn
action button on th&op after changing the values.

Note: Some of the variables of tHeID workspace are not used in this lab, since we
are not interested in a derivative part. Why are we not interested ivatigg action?
Pl control

For processes working around a stationary point correspondingrneer input
signal, P control results in a stationary control error. This error caselseeased by
increasing the proportional gain. However, this is done at the expdnstalulity
margins and noise suppression. An attractive alternative to increasimgitihés to
introduce an integrator in the controller.

A continuous time Pl controller has the transfer function:

U(s)=K <1+ s'lr.> E(s)

whereE(s) = Y;(s) — Y(s). The signals and constants are:

U control signal

Y process output

Y, reference
E control error

K proportional gain

T; integral gain

To be able to implement this controller in a computer, the integrating parts must be
replaced by a discrete time approximation. Here this is done by assumingridonsta
control error between sample points. Introducing this approximation, lotaéns the
following pseudo-code implementation (running once per sample period):

Ppart = K*(r-y)
vl = Ppart + Ipart
if vl <= umin:
u = umin
else if vl >= umax:
u = umax
else:
u = vl
Ipart = I_01d+K*h/Ti*(r-y)

off

%— Control_On & I_On
Control_On & 1_On I

I
v

P_Cantroller \ /
+ P_Controller.y == (h-1) Pl_Controller.t == th-1)

54

Pl_Contraller

4
N

N . A

%: IControl_On El: Control_On & 11_On Control On & 1.0n

Controller Parameters
E Ti Td Tr Nd ‘Tref
Real 15.0 I.Riz'al.2D‘IJEl|| Real 0.0 I K'era'flﬁEﬁ'.EIl 'Rea]fﬂ’:'u:l Real40.0 Real 0.0 I Real 100.0)
K Tir ELE Hd - Tref umin - umax

Figure4 Contents of th@ID workspace

Preparation Exercise 6.2 Implement the Pl algorithm in JGrafchart (pen and pa-
per). UseTemp for the latest measuremerd) (of the temperature. For parameters, use
the nameg, Ti, h. Calculate the nominal control signal as the sum of the terms
Ppart andIpart, which represent the internal values of the controller’s proportional
and integral parts.

The P controller used until now, provides the blocks and interconnecimeed for
your Pl implementation. Its JGrafchart implementation is shown in Figure 6.

Exercise 6.3 Implement your PI controller from Preparation Exercise 6.2 in the
designated macro step in tR&D workspace (sub-workspace Dép) in JGrafchart,
see Figure 6.

Note: The PI macro step already contains the P controller shown in Figure 6.

Note: Notice that the temperature controller will only start if the boolean variable
PID_On (Top workspace) is 1 and that the P controller (as opposed to the PI con-
troller) is used if the boolean variable On (Top workspace) is 0.

S Ppart = K*|(Tref- Temp);
51 1S Ipart = 0.0;
S vl = Ppar

vl < umin —= (v1l<=umax) & (umin<=v1l) ——=v1l > umax
S u = umin; Su=vl; S U= umag
56 — 54 — 55 —
=—8| =—R1} =1
52

Figure5 P controller for theP_Controller macro step

Test your PI controller

Exercise 6.4 Simulate the system with a Pl controller parameterizedKby 15,
T, = 2000, Ty = 0 andh = 200. Study the behavior of the system. What happens if
the control signal saturates?

In order to avoid the phenomenon mentioned above, a gfTe* (u-v1), where
Tr is a positivetracking constant, can be added, when updatipgrt. This term
preventsIpart from continue growing if the control signal saturates.

Notice that the final control signalis computed from a nominal control signal in
the pseudo-code for the PI controller.

Preparation Exercise 6.5 The phenomenon mentioned above is called integrator
windup. Why does it occur and how does it affect the system? Modify Pbeon-
troller (pen and paper) to include integral anti-windup.

Exercise 6.6 Change your Pl controller sequence in JGrafchart to include the anti-
windup. The parametélr is available on th€ontrol workspace. What happens to
the control signal whemir=200, 750, and 25007?

7. TheFinal Result

Exercise 7.1 As a final part of the laboration, run the entire batch sequence, in-
cluding the windup-protected PI controller, on the real process. Usedihioller
parameters:

10

K=15

Ti =2000
h=200
Tr =750

(Don'tforget to set the variabfgimulation (Top workspace) to 0. Click theim_0f £
action button to change this.)

How reliable is the model of the system used for simulation?

8. Conclusions

During the laboratory exercise we have developed a small controlgrofgr a batch
reactor. The program contains both a sequential part and a Pl confooltemper-
ature control. This mix of control loops and logic is very common and can tnedfo
in all from highly complex industrial processes to electric domestic applicsies
as laundry machines.

11

A. Introduction to JGrafchart

JGrafchart is a Grafcet/SFC editor and execution environment deveiigbe De-
partment of Automatic Control, Lund University.

A.1 On-lineHep

JGrafchart has an on-line help, which can be reached from the mencedtelp.

Help about any object in JGrafchart can also be found by pressirgptexh bubble

with an"i" on the toolbar. Once it has been pressed the marker arrow will become a
speech bubble with &". If the speech bubble with &" is placed over any object

and the mouse button is pressed information about the object will appearawses.

The browser may take some time to start. To go back to normal mode pressebhk spe
bubble with ar'i" once again. Use the help!

A.2 Workspaces

Grafcet sequence diagrams are created interactively using dragramérom a palette
containing the different Grafcet language elements. The sequencardmgre stored
on JGrafchart workspaces, see Figure 6.

= JGrafchart =TT

File Edit Execute Misc Hel,

Es|E

b xwe[a[o[c]| flo®a]al o z

[5] Top-Level: Lab3 e

v

GFC
 Palette

Measurements Control Signals

Wait Real 20392| Real 0.361 Bool 0 Bool 0 Bool 0 Bool 0 Bool 0

Temp Tevel TPump_OutPump _ Heat Agiater Cool
o]
Logical Signals

o Bool 0 Bool 0 Bool 0 I Baol 0 ||Buul] ||Buu|l |
Initial Step

Start StopHeat PID_On 1_On Simulation Plat

|§= o Workspaces

o o o [m| o o
=] [=] O [} jm] O
S-Hear o m} o [} o o

Sensor FID Sockets 10 Pt Logic
§= o]

Step

0 Control Panel
Transition seEmpry Startsequente StepHeating |
.
0] Update
Parallel Split
- VRN Sim_on | Sim_off |
Parallel Join L
i S 1-Part On | I-Part Off [
==]I”—
. P Reset-PID
Macro Step
Lo |
S| [Tv] |

Figure6 JGrafchart with palette, menus, toolbar, and a workspace.

Workspaces can be stored to a file and loaded from a file. The file is sieirgglthe
XML format.

If multiple workspaces are used, only one of them is the current foaumému
choices. This is indicated through a blue workspace border, rathethtbandinary
gray border. The focus is changed by clicking on a workspace. T$usaatomati-
cally moves the workspace to the front.

On aworkspace itis possible to select an object or an area containing mokijpts
in the standard fashion. A selected object can be moved, cut to the cliplmvard
copied to the clipboard. The contents of the clipboard can be pasted tkapaoe.

12

Grafcet objects are connected together graphically by clicking on theection
stubs. A connection can be moved by selecting it and moving one of the ¢passr
points. This is specially needed when a Grafcet object is connected tteeambject
that is above the first object.

A selected Grafcet object or connection is deleted usin@#hete key.

A.3 Grafcet Elements

This version of JGrafchart supports the following Grafchart elemesteps, ini-
tial steps, transitions, parallel splits, parallel joins, macro steps, wodespgects,
exception transitions, digital inputs, digital outputs, analog inputs, analtauts,
socket inputs, socket outputs, internal variables (real, booleang,séid integer),
action buttons, and free text for comments. Inputs and outputs have \albead
configured for this lab, and are therefore not covered here.

Steps Grafcet steps have action blocks that may be made visible or hidden through
menu choices on the step menu that is obtained by double-clicking on theestep, s
Figure 7. The name of a step is located on the left hand side and it can hgecha

by click-and-edit. Step actions are entered as text strings, throudtdthgtep menu

8 Motor = 1;

51 52

Figure7 Step with action block hidden and visible.

choice, which is found by right-clicking on the icon of the step. Multiple stdjpas
are separated by semi-colons.

Four different action types are supported. Stored actions (impulse siction exe-
cuted once when the step is activated. The syntax for stored actions is:
S "variable-or-output" = "expression";

Periodic actions (always actions) are executed periodically, oncg sean cycle,
while the step is active. The syntax for periodic actions is:
P "variable-or-output" = "expression";

Exit actions (finally actions) are executed once, immediately before the sdepds
tivated. The syntax for exit actions is:
X "variable-or-output" = "expression";

Normal actions (level actions) associate the truth value of a digital outputoolean
variable with the activation status of the step. The syntax for a normal action is
N "output";

The expression syntax follows the ordinary Java syntax, with some minepggns.
One important exception is that the literal O is used both to represent theahoole
literal False and the integer literal 0. The context decides the interpretation.

The operators supported are: + (plus), - (minus), * (multiplication), Vigdin), !
(negation), & (and)| (or), == (equal), != (not equal), < (less than), > (greater than),
<= (less or equal), >= (greater or equal).

Expressions may contain name references to inputs, outputs, and \&rikiafchart
uses lexical scoping based on workspaces. For example, a variahkdné on

13

workspace W1 is different from a variable named X on workspace Végeriences
between workspaces are expressed using dot-notation. For exarafdp,action in
a step on workspace W1 can refer to the variable Y on workspace W@ Wairy.

Initial Steps Initial steps are ordinary steps that are active initially when the exe-
cution of the sequence diagram starts. Initial steps may have actions imibensgy
as ordinary steps.

Transitions Transitions represent conditions or events that should be true (1) in
order for the Grafcet to change state. The transition expression eseaygied by a text
string associated with the transition, see Figure 8. A transition expressialitésl e

51

== S1.t>=10

83

Figure8 Transition

through theEdit transition menu choice (right click on the icon of the transition).

The transition expression should return a boolean value. The exprassitax is the
same as for step actions with a few additions. The expression "stepNawteitxs 1
if the step is active and 0 otherwise. The expression "stepName".t réfiernsmber
of scan cycles since the step last was activated. A scan cycle is typicalQ bts.
The expression "stepName".s returns the absolute time, in seconds, snsefh
last was activated. The expression /"boolean-variable-or-inputésepts a positive
trigger event. It is 1 if the value of the variable or input was 0 in the previcas s
cycle and is 1 in the current cycle. Similarly, the expressjroolean-variable-or-
input” represents a negative trigger event. For example, the expressioh \y) is

1 whenever the boolean variabiehanges its value.

Parallel Splitsand Joins Parallel branches are created and terminated with parallel
splits and parallel joins. The parallel objects only allow two parallel brasidhenore
branches are needed, the parallel elements can be connected insseriegjure 9.

Macro Steps A macro step represents a hierarchical abstraction. The macro step
contains an internal structure of steps, transitions, and macro stepseaf@d on a
separate (sub-)workspace. The sub-workspace is made visiblédateh by double-
clicking on the macro step. The first step in the macro step is representespbyial

enter step. Similarly the final step of the macro step is represented by al spéicia
step. Both the enter step and exit step are ordinary steps and may, eegachians.

The situation is shown in Figure 10.

The sub-workspace of a macro step has a local name space lexicallynedniathin
the name space of the macro step itself. For example, the sub-workspheeracro
step M1 may itself contain a macro step named M1, without causing any ambiguities.

14

s1

52 83 54

<

Figure9 Parallel branching with three branches.

M2

Figure 10 Macro step M2 with internal structure. The internal structure containsrites e
step S1 and the exit step S2.

Exception Transitions An exception transition is a special type of transition that
only may be connected to a macro step. The exception transition is connadtes o

left hand side of the macro step. An ordinary transition connected to a rst@grdoes

not become enabled until the execution of the macro step has reacheit gtegxAn
exception transition, however, is enabled all the time while the macro step is.activ
When the transition is fired the execution inside the macro step is terminated and
the step succeeding the exception transition becomes activated. Excegotigiidns

have priority over ordinary transitions in cases where both are fire-Ablexception
transition connected to a macro step is shown in Figure 11.

Internal Variables Internal variables are variables that can be both read from and
written to. Four types of variables are available: real variables, boolegables,
integer variables, and string variables. Associated with each variakits sedue and

its name, see Figure 12. Both can be changed by click-and-edit.

Action Buttons An action button performs an action when clicked on during execu-
tion. The syntax of the action is the same as for stored actions of a stepgeee 3.

15

kA2

M2t>5 N __

81

Figure 11 An exception transition connected to macro step M2. The exception transition
will fire when M2 has been active longer than 5 scan cycles.

Boal 0 Int Q

Qpen Caunt

Figure 12 Boolean variable (left) and integer variable (right).

Multiple actions are written on one line separated by semi-colons.

= Assignment Button
Mame:
" s |Sim_0n |
o Sim_on
Action:
|s Sirnulation =1 |
| ok | | camel |

Figure13 Action Button with its action.

Workspace Object To easier organize the programs in JGrafchart one can use the
workspace object. A workspace object on the top level workspactiogna sub-
workspace that can be used just as the top level workspace.

Free Text Text comments can be added to a workspace by drag-and-drop of the
Free Text text string on the palette. By single-clicking on the text the text string can
be edited. By double-clicking on the text a menu is shown where it is possible to
change font, size, color, etc of the text.

A.4 Execution

Grafcet sequence diagrams are executed by a periodic thread tsdatith each
top-level workspace. The thread cyclically performs three operations:

1. Read Inputs. The values of the digital inputs are read.

2. Execute Diagram. All the transitions in the diagram are checked. Steps ar
activated and deactivated.

16

3. Write Outputs. The values of the digital outputs are written.

Before a sequence diagram can be executed it must be compiled. Thisedyo
selectingCompile All from theExecute menu or by using the buttons on the toolbar,
see Figure 6.

Two types of problems may arise during compilation: parsing errors andayaitie
lookup errors. Parsing errors are actually detected already whetefhadions and
transition expressions are entered. For example, the transition exprégsiR z)
would generate a parsing error. (The syntactically correct expresbiould be(y

| z)). Symbol table lookup errors occur if a name reference does not exgst,if
there does not exist any variables nampext z in the previous example. Both parsing
errors and symbol table lookup errors are indicated by a change in theolex of
the transition expression or step action from black to red. There will alsm egror
message written in the field next to the stop button on the toolbar.

In the Execute Diagram part of the execution cycle the following operations are
performed. For each transition in the diagram, the transition expressionisied

If it is 0, then the transition icon is changed to red. If it is 1, the transition icon is
changed to green. If, additionally, all steps preceding the transitionctive athen

the steps preceding the transition is marked to become deactivated in thgclext ¢
and all the steps succeeding the transition are marked to become activatedéxth
cycle. When all transitions have been checked, the change of step stdiftecisi-

ated. In addition to the things above, step actions are executed and the step timin
information is updated.

Programming in JGrafchart

Programming in JGrafchart is done by dragging and dropping objauttine palette
in Figure 6 on to a workspace. The objects are connected by clicking cstube
of and object and drawing a line to the object it is to be connected with. Tiee ru
of Grafcet has to be followed: A step cannot be connected to a stepoamml Jhe
steps and transitions can be edited. Variables and inputs and outputdiaeel ¢y
dragging and dropping them on a workspace. After the function diagpasrbeen
built the workspace has to be compiled and if there are no errors the furttart
can be executed.

17

