
1.

a. The coherence spectra related to H11 and H22 are rather good up to 1 Hz.

Hence, the estimated models cannot be trusted up to more than 1 Hz. Ho-

wever, also in this frequency interval, we notice that the accuracy of the

models H12 and H21 are quite poor, and, in particular, much lower than the

one for H11 and H22.

b. From the process set-up, we see that u1 has its largest influence on y1 and

u2 on y2. Hence, the best pairing is u1 = C1y1 and u2 = C2y2.

2.

yk = b1c0︸︷︷︸
θ1

+ b1c1︸︷︷︸
θ2

uk−1 + b1c2︸︷︷︸
θ3

u2k−1 − a1︸︷︷︸
θ4

yk−1 − a2︸︷︷︸
θ5

yk−2




y3

y4
...

yN



=




1 u2 u22 y2 y1

1 u3 u23 y3 y3

...
...

...
...

1 uN−1 u2N−1 yN−1 yN−2




θ

Using the LMS approach, we find

θ̂ = (ΦTΦ)−1ΦTY.

From θ̂ , â1 and â2 are readily calculated. To obtain other parameters, we
make use of the assumption on the static gain, i.e,

b1

1+ a1 + a2
= 1[ b̂1 = 1+ â1 + â2

So, we can find all parameters as below

b̂1 = 1+ θ̂4 + θ̂5, â1 = θ̂4, â2 = θ̂5,

ĉ0 =
θ̂1

1+ θ̂4 + θ̂5
, ĉ1 =

θ̂2

1+ θ̂4 + θ̂5
, ĉ2 =

θ̂3

1+ θ̂4 + θ̂5

3.

a. The recursive least-squares algorithm is

θ̂ k = θ̂ k−1 + Pkφ kǫk

ǫk = yk − φTk θ̂ k−1

Pk = Pk−1 −
Pk−1φ kφ

T
k Pk−1

1+ φTk Pk−1φ k

Introduce

φ k = 1

Pk = (
k∑

i=1

φ iφ
T
i )
−1 =

1

k
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where, the parameter variance has been calculated using the standard de-

finition. Alternatively, P1 = 1 can be calculated and used in the recursive
equation to obtain the same result.

Finally,

θ̂ k = θ̂ k−1 +
1

k
(yk − θ̂ k−1) =

(
1−
1

k

)
θ̂ k−1 +

1

k
yk

b. The regression model is



y1
...

yN


 =



1
...

1


θ +



e1
...

eN




with the least-squares estimate

θ̂ k = (Φ
TΦ)−1ΦTY [ θ̂ k =

1

k

N∑

k=1

yk.

By dividing the summation into two parts, we get

θ̂ k =
1

k

(
N−1∑

k=1

yk + yk

)
=
1

k

(
(k− 1)θ̂ k−1 + yk

)
=

(
1−
1

k

)
θ̂ k−1 +

1

k
yk.

4. The transfer function is

a.

H(z) =
z− 1

z2 − 1.79z+ 0.792

The controllable canonical form is given by

xk+1 =

(
1.79 −0.792

1 0

)
xk +

(
1

0

)
uk

yk = ( 1 −1 ) xk

b. First, we calculate the observability Gramian Q by solving the Lyapunov

equation.

ΦTQΦ − Q + CTC = 0

2.204Q11 + 3.58Q12 + Q22 + 1.0 = 0

−1.418Q11 − 1.792Q12 − 1.0 = 0

0.627Q11 − Q22 + 1.0 = 0

with the solution

Q11 = 2.6844,Q12 = −2.6817,Q22 = 2.6838

Σ = Qz = T
−TQT−1 =

(
2.6837 0

0 2.4045

)

Since the elements of matrix Σ have the same order of magnitude, it is not
advisable to reduce the order of the model.

2



c.

zk+1 =

(
0.791 0.0423

−0.0423 0.999

)
zk +

(
−1

0.0118

)
uk

yk = (−1 −0.0118 ) z(k)

And the reduced model is

z1k+1 ( (0.791+
0.0423

1− 0.999
(−0.0423))z1k + (−1+

0.0423

1− 0.999
0.0118)uk

= −0.998z1k − 0.5uk

yk ( (−1+
−0.0118

1− 0.999
(−0.0423))z1k +

−0.0118

1− 0.999
(−1)uk = −0.5z

1
k − 0.139uk

Therefore,

Hr(z) =
0.1113z− 0.139

z+ 0.998

Accordingly, the reduced system is not simply resulted from cancelling the

pole and the zero.

5.

a. Since ek is white noise we know that

fe(e2, e3, . . . , eN) = fe(e2) fe(e3) ⋅ ⋅ ⋅ fe(eN)

Writing the residuals ǫk as a function of θ̄

ǫ(θ̄ ) = yk −ϕTk θ̄

we get the likelihood function

L(θ̄ ) =

N∏

k=2

fe(ǫ(θ̄ )) = α N e−β
∑N
k=2 pyk−ϕT

k
θ̄ pp

The optimization problem to be solved to obtain the ML estimate, θ̂ is

θ̂ = argmax
θ̄
L(θ̄ )

This problem might be simplified by taking the logarithm of L(θ̄ ).

b. An outlier is a point in the regression data, r for which the numerical value

of pyk−ϕTk θ̄ p is drastically different compared with the rest. If p is large this
one term might dominate the rest and in the limiting case when p goes to

infinity, the optimization problem solved is

max
θ̄
pyr −ϕTr θ̄ p

since the other terms disappear.
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6. Using standard trigonometric formulas rewrite

y(t) = c sin(ω t+ φ) + e(t) = sin(ω t)c cos(φ) + sin(φ)c cos(ω t) + e(t).

Put

θ = ( c cos(φ) c sin(φ) )

and form the equation system



y(t1)

...

y(tN)




︸ ︷︷ ︸
Y

=



sin(ω t1) cos(ω t1)

...
...

sin(ω tN) cos(ω tN)




︸ ︷︷ ︸
A

θ +



e(t1)

...

e(tN)




︸ ︷︷ ︸
E

.

The least-squares estimate of θ is given by

(
θ̂1

θ̂2

)
=
(
ATA

)−1
ATY.

Estimates of c and φ can then be found by

ĉ = (θ̂1)
2 + (θ̂2)

2

and

φ̂ =





arctan( θ̂2
θ̂1
), θ̂1 ≥ 0, θ̂2 ≥ 0

arctan( θ̂2
θ̂1
) +π , θ̂1 ≤ 0, θ̂2 ≥ 0

arctan( θ̂2
θ̂1
) −π , θ̂1 ≤ 0, θ̂2 ≤ 0

7. The best unbiased linear estimator is given by the least-squares estimate.

Ergodicity gives

b̂ =

∑N
i=0 uiyi+1∑N
i=0 u

2
i

→
Ryu(1)

Ruu(0)
=
Ruu(0) + Ruu(1)

Ruu(0)
= 1+

Ruu(1)

Ruu(0)
.

Thus we get the following estimates of b for the different input signals:

a. Ru(k) = c
2 so b̂ = 2

b. Ru(k) = (−1)
k so b̂ = 0

c. Ru(k) = δ (k)σ 2 so b̂ = 1

8. First we note that σ 2r = 0 implies uk = −Kyk and then note that the
task can be solved in several ways. Here we present two alternatives, using

spectrum analysis and least-squares estimation.
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• Spectrum analysis: we note that the system can be written on the form

yk = H(z)uk−1 + ek

where H(z) is the pulse-transfer function of the system. As uk = −Kyk
this gives us the following closed-loop dynamics from ek to yk:

yk =
1

1+ H(z)K
ek

uk = −
K

1+ H(z)K
ek

Calculating the cross-spectrum Syu(iω ) and the autospectrum Suu(iω )
gives

Syu(iω ) = −
K

p1+ HK p2
See(iω )

Suu(iω ) =
K 2

p1+ HK p2
See(iω )

The transfer function estimate Ĥ = Syu(iω )/Suu(iω ) then gives

Ĥ = Syu(iω )/Suu(iω ) = −
1

K

which shows that in lack of a persistently exciting rk, the estimation

of the process model fails.

• Least-squares: one natural way of trying to solve this estimation pro-
blem is to write it on the form

yk = (−yk−1 uk−1 )

(
a

b

)
+ ek

Forming the regressor matrix based on N observations, however, gives

the results

Φ =




−y1 u1
...

...

−yN−1 uN−1


 =




−y1 −Ky1
...

...

−yN−1 −KyN−1




which in turn gives

ΦTΦ =

( ∑N−1
k=2 y

2
k−1 K

∑N−1
k=2 y

2
k−1

K
∑N−1
k=2 y

2
k−1 K 2

∑N−1
k=2 y

2
k−1

)

As rank (ΦTΦ) = 1 there will be no unique solution of the least-
squares problem, and hence we can not estimate the process model.

9.
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a. One way is to verify the factorization property by direct substitution of

Markov parameters hk = CA
k−1B into the Hankel matrix.

H
(k)
r,s =




hk+1 hk+2 ⋅ ⋅ ⋅ hk+s

hk+2 hk+3 ⋅ ⋅ ⋅ hk+s+1
...

...
. . .

...

hk+r hk+r+1 ⋅ ⋅ ⋅ hk+r+s−1




=




CAkB CAk+1B ⋅ ⋅ ⋅ CAk+s−1B

CAk+1B CAk+2B ⋅ ⋅ ⋅ CAk+sB
...

...
. . .

...

CAk+r−1B CAk+rB ⋅ ⋅ ⋅ CAk+r+s+2B




=




C

CA
...

CAr−1


 A

k ( B AB . . . As−1B )

b. Using a numerical factorization such as the singular value decomposition it

is possible to find estimates of the extended observability and controllability

matrices. In turn, this information can be used to determine a state-space

realization {A, B,C}. In the factorization above, the matrix

Or =




C

CA
...

CAr−1




is the extended observability matrix and

Cs = ( B AB . . . As−1B )

the extended controllability matrix.

For k = 0, the factorization is then:

H
(0)
r,s = Or ⋅ Cs

= UΣVT

= UΣ1/2Σ1/2VT

Where the second inequality is obtained through singular value decompo-

sition. We then have:

Or = U ⋅ Σ1/2

[ O
†
r = Σ−1/2UT

Cs = Σ1/2 ⋅ VT

[ C
†
s = V

TΣ−1/2

6



The dagger sign on e.g. O†r denotes the pseudo inverse.

The state space matrices are then, inserting the expressions for the pseu-

doinverse for the extended observability and controllability in for example

A = O†rH
(1)
r,s C

†
s and using the expressions above:

Ân = O
†
rH

(1)
r,s C

†
s

= Σ
−1/2
n UTn H

(1)
r,s VnΣ

−1/2
n

B̂n = Cs ⋅
[
Im$m 0m$(s−1)m

]T

Ĉn =

[(
Ip$p

0T
p$(s−1)p

)]T
Or
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