a. The coherence spectra related to H{; and Hys are rather good up to 1 Hz.
Hence, the estimated models cannot be trusted up to more than 1 Hz. Ho-
wever, also in this frequency interval, we notice that the accuracy of the

models Hqo and Hs; are quite poor, and, in particular, much lower than the
one for Hy; and Ho,.

b. From the process set-up, we see that u; has its largest influence on y; and
us on ys. Hence, the best pairing is u; = Ciy; and us = Cyys.
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Using the LMS approach, we find

6=@To)loTy.

From 0, G; and d, are readily calculated. To obtain other parameters, we
make use of the assumption on the static gain, i.e,

b1

—— =1=b=1+a;+d
1+a;+as ! rre

So, we can find all parameters as below

by =1+04+ 65, a1 = Oy, s = 5,

a. The recursive least-squares algorithm is
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where, the parameter variance has been calculated using the standard de-
finition. Alternatively, P; = 1 can be calculated and used in the recursive
equation to obtain the same result.

Finally,
Br =01+ (k=0 1) = (1= =) Opr+ 2
. The regression model is
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with the least-squares estimate
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By dividing the summation into two parts, we get
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The transfer function is
-1
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The controllable canonical form is given by
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ye=(1 —1)x

. First, we calculate the observability Gramian @ by solving the Lyapunov
equation.

oTQe - +Ccf'Cc=0

2.204Q11 +3.58Q12 + Q22 +1.0=0
—1.418Q11 — 1.792Q12 —1.0=0
0.627Q11 — Q22 +1.0=0

with the solution
Q11 = 2.6844, Q19 = —2.6817, Q29 = 2.6838
2.6837 0
Y=Q,=TTQT =
@ @ ( 0 2.4045)

Since the elements of matrix ¥ have the same order of magnitude, it is not
advisable to reduce the order of the model.
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And the reduced model is
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0.1113z — 0.139
H,(2) = -

z+0.998

Accordingly, the reduced system is not simply resulted from cancelling the
pole and the zero.

. Since ej, is white noise we know that

fe(ez,es3,...,en) = fe(ez)fe(es) - fe(en)
Writing the residuals ¢, as a function of 8
€(6) =y — ¢4 0
we get the likelihood function
N
L(6) = [T fe(c(8)) = aN e P izsbrsior
k=2

The optimization problem to be solved to obtain the ML estimate, 0 is

6 = argmax L(6)
Z

This problem might be simplified by taking the logarithm of L(8).

. An outlier is a point in the regression data, r for which the numerical value
of |yr— (0,%19_| is drastically different compared with the rest. If p is large this
one term might dominate the rest and in the limiting case when p goes to
infinity, the optimization problem solved is

max |y, — o7

since the other terms disappear.



Using standard trigonometric formulas rewrite
y(t) = csin(wt + @) + e(t) = sin(wt)c cos(¢) + sin(@)c cos(wt) + e(2).

Put
0 = (ccos(¢) csin(¢))

and form the equation system

y(t1) sin(wt;) cos(wty) e(t1)
- : 0+
y(ty)/  \sin(wiy) cos(win) e(tn)
Y A E

The least-squares estimate of 0 is given by

(g;) - <ATA)_1ATY.

Estimates of ¢ and ¢ can then be found by

and )
arctan(%), 6:>0,0,>0
1
¢ = arctan(%) +7, 6,<0,6,>0
1
arctan(%) T, 6,<0,6,<0
1

The best unbiased linear estimator is given by the least-squares estimate.
Ergodicity gives

o SN ouyier Ryu(1) | Ruw(0) +Ruu(l) | Ruu(1)
b= ZN 5 7 = =1+
i=0 Y;

uu(0) Ryu(0) Ryu(0)°
Thus we get the following estimates of b for the different input signals:
.Ry(k)=c?s0b=2
. R,(k)=(-1)Fksob=0
. R (k) =6(k)o2sob=1
First we note that 62 = 0 implies u, = —Ky, and then note that the

task can be solved in several ways. Here we present two alternatives, using
spectrum analysis and least-squares estimation.



e Spectrum analysis: we note that the system can be written on the form
yr=H(2)up_1+ e

where H (z) is the pulse-transfer function of the system. As u;, = —Ky;,
this gives us the following closed-loop dynamics from ej to y:

1
Y= 1+H(z)Kek
_ K
“eo= 1+H(z)Kek

Calculating the cross-spectrum Sy, (iw) and the autospectrum S, (i)
gives

. K :
Syp(iw) = —7|1 n HKleee(za))
. K2 .

Suu (la)) msee(lQ))

The transfer function estimate H = Sy (iw)/Suu(iw) then gives

H = 8,0 (i0)/Suu (i) = —%

which shows that in lack of a persistently exciting r,, the estimation
of the process model fails.

e Least-squares: one natural way of trying to solve this estimation pro-
blem is to write it on the form

a
Yo = (—Yr—1 Up—1) 5 +ep

Forming the regressor matrix based on N observations, however, gives
the results

—) U —)1 —Ky;

—YN-1 UN-1 —yN-1 —Kyn_1
which in turn gives

oTp — (Zkakl KQZkzyk1>
K2k2yk1 KZkzykl

As rank (®T®) = 1 there will be no unique solution of the least-
squares problem, and hence we can not estimate the process model.



a. One way is to verify the factorization property by direct substitution of

Markov parameters h, = CA*"1B into the Hankel matrix.

hit1 hiy2 T Pis
hiva  hres 0 Rrgsqr
HE =
hk+r hk+r+1 t hk+r+s—1
CA*B CA*1B ... CAk+s-1B
CAk+1B CAk+2B CAk+sB
CAk+r—lB CAk+rB L. CAk+r+s+2B
C
CA
= _ A*(B AB ... A*'B)
CAr—l

b. Using a numerical factorization such as the singular value decomposition it

is possible to find estimates of the extended observability and controllability
matrices. In turn, this information can be used to determine a state-space
realization {A, B, C}. In the factorization above, the matrix

C
CA

CA™1
is the extended observability matrix and
% =(B AB ... A*1B)

the extended controllability matrix.
For k& = 0, the factorization is then:

HY =0, %
=UxvT
— U21/221/2VT

Where the second inequality is obtained through singular value decompo-
sition. We then have:

0, =U.xl?
= of =x12y”

€, = 21/2 . VT
= ¢l = VvTx1l/2



The dagger sign on e.g. ﬁ: denotes the pseudo inverse.

The state space matrices are then, inserting the expressions for the pseu-
doinverse for the extended observability and controllability in for example

A= ﬁj H,(}S)CKST and using the expressions above:
A, = 6fH)%]
-1/2 1 -1/2
=3, PuTH v,z
Bn =Cs - [Imxm Omx(s—l)m]

T
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