
Institutionen för

REGLERTEKNIK

FRT 041 System Identification

Final Exam March 13, 2014, 8am ­ 1pm

General Instructions

This is an open book exam. You may use any book you want, including the slides

from the lecture, but no exercises, exams, or solution manuals are allowed. Solu-

tions and answers to the problems should be well motivated. The exam consists

of 8 problems. The credit for each problem is indicated in the problem. The total

number of credits is 25 points. Preliminary grade limits:

Grade 3: 12 – 16 points

Grade 4: 17 – 21 points

Grade 5: 22 – 25 points

Results

The results of the exam will be posted at the latest March 21, 2014 on the note

board on the first floor of the M-building.
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Figur 1 Left: coherence spectrum. Right: input and output autospectra. Notice that the

frequency axis is linear in the coherence plot, but logarithmic in the spectrum plots.

1. In Figure 1 the coherence spectrum as well as the input and output auto

spectra for a particular experiment are shown. The sampling frequency used

when obtaining the data was 37.71 Hz.

a. In what frequency range can a model estimated from this data be expected

to describe the true system accurately? Motivate your answer. (1 p)

b. What can be said about the choice of sampling frequency for the experiment?

Discuss the potential risks of choosing too high respectively too low sampling

frequency when doing system identification! (2 p)

c. The choice of model order is an important and often difficult problem in

system identification. In this problem, two different models has been esti-

mated from the data used in problem a. The first model consists of an

estimate of the transfer function, which has been obtained using the Mat-

lab command spa. A Bode plot for the model is shown in Figure 2 (left). The
second model is a 25th-order ARX model, which has been obtained using

the Matlab command arx. The Bode plot for this model is also shown in

Figure 2. The ARX model was converted to a state-space model, and a ba-

lanced realization was calculated. The diagonal values of the Gramian are

shown in Figure 2 (right).

Your task is to suggest a suitable model order for the system. You answer

should be well motivated. (2 p)

Solution

a. The coherence spectrum is fairly close to one in the frequency range 0 Hz

to 5.5 Hz, which indicates that the system that generated the data may be

well described by a linear system model in this range. For frequencies above

5.5 Hz the coherence spectrum is close to zero, which indicates that the data

are not suitable for estimating linear models describing the system for high

frequencies. By studying the input autospectrum it may be concluded that
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Figur 2 Left: Bode diagrams for the transfer function estimation (dashed) and AR-
MAX model (solid) respectively. Right: Diagonal values of the Gramian for the balanced
realization.

the energy content in the input signal is very small for frequencies above

5.5 Hz, which could be a partial explanation to this observation.

b. As a rule of thumb, a reasonable way of choosing the sampling interval, h,

is to let

ωh = [0.2, 0.6]

where ω represents important frequencies of the system, such as the cross
over frequency or the natural frequency. In our case, we cannot expect to

obtain a model valid for frequencies above 5.5 Hz, which corresponds to

ωh ( 0.9. However, in order to fully judge the choice of sampling interval
we must have knowledge about the significant frequencies of the system.

In general, if the sampling interval is chosen very short relative to the

significant frequencies of the system, this could lead to numerical precision

problems. On the other hand, by choosing a too long sampling interval,

there is a risk that important dynamics above the Nyquist frequency are

not described by the resulting model.

c. The plot of the diagonal values of the Gramian suggests a 5th-order model

since the first five values are significantly larger than the others. Also, from

the Bode diagram, it seems like the system has two resonance peaks, which

indicates that the system have at least four poles.

2. You are trying to estimate the parameters from the moving average process

y(k) = au(k− 1) + bu(k− 3) + e(k). (1)

where {e(k)} is a zero mean white noise process with variance σ 2 and
{u(k)} is a zero mean weakly stationary process with autocovariance func-
tion Cuu(τ ) = (1/2)

pτ p that is uncorrelated with {e(k)}.

We are interested in finding the least squares estimate for θ̂ = ( â b̂ )T .
Does the parameter estimate have an asymptotic distribution? If so, what

is the distribution and its parameters? (4 p)
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Solution

The model (1) can be written as y(k) = ϕTθ + e(k), where θ = ( a b ) and

ϕ(k)T = (u(k− 1) u(k− 3) ) .

Given N samples of observed input data the regression matrix is

ΦN =









u(3) u(1)

u(4) u(2)

...
...

u(N + 2) u(N)









.

Now

1

N
ΦTN ΦN =

1

N

( ∑N+2
k=3 u(k)

2
∑N+2
k=3 u(k)u(k− 2)

∑N+2
k=3 u(k)u(k− 2)

∑N
k=1 u(k)

2

)

so, under ergodic conditions,

E(
1

N
ΦTN ΦN) = lim

N→∞

1

N
ΦTN ΦN =

(
Cuu(0) Cuu(2)

Cuu(2) Cuu(0)

)

=

(
1 0.25

0.25 1

)

Thus the regression matrix is invertible when the number of samples goes to

infinity. This fact together with the fact that the input signal is uncorrelated

with the noise signal ensures a consistent estimate. Therefore E(θ̂ ) = θ and
the central limit theorem (6.98) on page 121 in the book gives the asymptotic
distribution

θ̂ ∼ AsN(θ ,
σ 2

N
Σ)

where

Σ =

(
1 0.25

0.25 1

)−1

=
16

15

(
1 −0.25

−0.25 1

)

3. Devise a recursive algorithm to identify a general ARX process

y(k) = Gθ (z
−1)u(k) + e(k)

where {e(k)} is white noise with variance 1 uncorrelated with {u(k)}. Given
that we start from y1 and u1, what is the first yk in the residual calculation

(ǫk = yk −ϕ kθ̂ k−1)? (2 p)

Solution

Postulate a transfer function

Gθ (z
−1) =

b1z
−1 + b2z

−2 + ⋅ ⋅ ⋅+ bnbz
−nb

1+ a1z−1 + a2z−2 + ⋅ ⋅ ⋅+ anaz
−na
.

This gives the difference equation

y(k) + a1y(k− 1) + a2y(k− 2) + ⋅ ⋅ ⋅+ anay(k− na)

= b1u(k− 1) + b2u(k− 2) + ⋅ ⋅ ⋅+ bnbu(k− nb) + e(k)
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and thus the regression model

y(k) = ϕ(k)Tθ + e(k)

with

ϕ(k) =




















−y(k− 1)

−y(k− 2)

...

−y(k− na)

u(k− 1)

u(k− 2)

...

u(k− nb)




















and

θ = ( a1 a2 ⋅ ⋅ ⋅ ana b1 b2 ⋅ ⋅ ⋅ bnb )
T

Recursive least squares can now be used directly. The first observation will

be y(max(nb,na) + 1).

4. Consider a linear system

y(k) = G(z−1)u(k) + v(k) (2)

where {u(k)} and {v(k)} are uncorrelated. Given estimates Suu(e
iω ) and

Syy(e
iω ) of the input and output spectrum respectively find an estimate of

the disturbance spectrum Svv(e
iω ) such that the estimate is dependent on

the quadratic coherence spectrum between y and u. This dependency must

be shown. (2 p)

Hint: the quadratic coherence spectrum

γ 2xy(ω ) =
pSxy(e

iω )p2

Sxx(eiω )Syy(eiω )

Solution

The signal model (2) directly gives

Syu = G(e
iω )Suu(e

iω )

Syy = pG(e
iω )p2Suu(e

iω ) + Svv(e
iω )

The natural estimate is thus

Ŝvv = Ŝyy(e
iω ) − pG(eiω )p2 Ŝuu(e

iω )

= Ŝyy(e
iω ) −

pG(eiω )p2pŜuu(e
iω )p2

Ŝuu(eiω )

= Ŝyy(e
iω ) −

pŜyu(e
iω )p2

Ŝuu(eiω )

= Ŝyy(e
iω )







1−

pŜyu(e
iω )p2

Ŝuu(eiω )Ŝyy(eiω )
︸ ︷︷ ︸

Coherence spectrum







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In the final step, note Ŝuu(e
iω ) is real since Cuu(τ ) is symmetric.

5. Consider the setup for frequency analysis in Figure 3 with sT = ys cT = yc.
Assume the disturbance v affects the output of the system. Also assume that

the measurement time is T for each test signal with frequency ω i. How will
the estimated frequency response be affected when the disturbance v is

yc

ys

cos(

t
Object

sin(

sin(

ω

ω

ω

X

X

t )

t )

y=bsin( )

S
ig
n
a
l

g
e
n
e
ra
to
r

u

v

ωu1
t+φ

Σ

Figur 3 Noise corrupted frequency response analysis.

a. a constant i.e., v(t) = v0? (1 p)

b. ’white’ noise with mean 0 and variance σ 2? How much is it necessary to
increase the measurement duration T or the gain of the input signal u1 in

order to reduce the variance of the estimated frequency response, Ĝ, by a

factor 4? (3 p)

Solution

Let φ(ω ) = arg{G(iω )}.

The output from the sine channel is given by,

sT =

∫ T

0

(u1pG(iω )p sin(ω t+ φ(ω )) + v(t)) sinω tdt

= . . .

=
1

2
u1T pG(iω )p cosφ(ω ) +JsT

where

JsT =

∫ T

0

v(t) sinω tdt.

The output of the cosine channel is given by,

cT =

∫ T

0

(u1pG(iω )p sin(ω t+ φ(ω )) + v(t)) cosω tdt

= . . .

=
1

2
u1T pG(iω )p sinφ(ω ) +JcT

where

JcT =

∫ T

0

v(t) cosω tdt.
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The estimate of G(iω ) becomes,

Ĝ(iω ) = G(iω ) +JG(iω )

where the error JG is

JG(iω ) =
2

Tu1
(JsT + iJ cT)

a. In the case of a constant disturbance v(t) = v0, we get

JsT = 0,

JcT = 0.

The error due to a constant disturbance is thus zero.

b. We have

Ĝ(iω ) = G(iω ) +JG(iω )

The accuracy of Ĝ is then determined by the statistical properties of JG.

The mean value of JG is

E{JG} =
2

u1T
(E{JsT} + iE{JcT})

where

E{JsT} =

∫ T

0

E{v(t)} sinω tdt

= 0

and

E{JcT} =

∫ T

0

E{v(t)} cosω tdt

= 0

Thus E{JG} = 0 which implies that E{Ĝ} = E{G}.

The variance properties of Ĝ is given by

Var{Ĝ(iω )} = Var{JG(iω )}.

The variance of JG is given by

Var{JG} = Var{Re J G} + Var{Im J G}.

where

Var{Re J G} = E

{

2

u1T

∫ T

0

v(t) sinω tdt ⋅
2

u1T

∫ T

0

v(t) sinω sds

}

=
4σ 2

2u21T
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and

Var{Im J G} = E

{

2

u1T

∫ T

0

v(t) cosω tdt ⋅
2

u1T

∫ T

0

v(t) cosω sds

}

=
2σ 2

u21T

Thus

Var{JG} =
4σ 2

2u21T
+
2σ 2

u21T
=
4σ 2

u21T

To reduce the variance with a factor 4 we must either increase the integra-

tion time from T to 4T , or increase the gain of the input signal from u1 to

2u1.

6. Consider the system

mq̈ = −kq+ τ (3)

Show that using operator λ = 1/(1+sτ0), it is possible to identify parameter
m and k when q̈ is available. (2 p)

Solution

Application of λ to Eq. 3 gives

m
d

dt
(λ{q̇}) = −kλ{q} + λ{τ} (4)

From the operator algebra we have

pλ =
p

1+ τ0p
=
1

τ0
(1−

1

1+ τ0p
) =

1

τ0
(1− λ)

Thus we find
d

dt
(λ{q̇}) =

1

τ0
q̇−

1

τ0
λ{q̇}

And Eq. 4 simplifies to

λ{τ} =
1

τ0
m(q̇− λ{q̇}) + kλ{q} =

1

τ0
λ{q̇} = φTθ

where

φ = ( (q̇− λ{q̇})/τ0 λ{q} )T

θ = (m k )T

7. Consider the discrete transfer function

H(z) =
0.75z+ 0.35

z2 + 0.5z
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a. Show that

[
x1(k+ 1)

x2(k+ 1)

]

=

[
−0.0348 0.1272

0.1272 −0.4652

] [
x1(k)

x2(k)

]

+

[
0.8660

0.0049

]

u(k)

y(k) = [ 0.8660 0.0049 ]

[
x1(k)

x2(k)

]

is a state-space realization of H(z) (actually balanced). Determine the
asymptotic reachability Gramian P and the asymptotic observability Gram-

ian Q. (2 p)

b. Given the Gramians in a. investigate if a model-order reduction is possib-

le or not. If such a reduction of H(z) is possible and advisable, find the
reduced-order model. (2 p)

Solution

a. For the given state-space realization {Φ,Γ,C}, direct calculations give

C(zI − Φ)−1Γ = H(z)

For a balanced realization, the asymptotic reachability Gramian P is equal

to the asymptotic observability Gramian Q. The diagonal matrix Σ = P = Q
fulfills the discrete-time Lyapunov equations

P = ΦPΦT + ΓΓT

Q = ΦTQΦ + CTC

Solving the first equation gives

[
p11 0

0 p22

]

=

[
−0.0348 0.1272

0.1272 −0.4652

] [
p11 0

0 p22

] [
−0.0348 0.1272

0.1272 −0.4652

]

+

[
0.8660

0.0049

] [
0.8660

0.0049

]T

The solution is

Σ = P = Q =

[
0.7511 0

0 0.0155

]

(5)

Since Φ = ΦT and C = ΓT the second Lyapunov equation gives the same
result.

b. Yes, since the eigenvalues of the Gramians are not of the same order, σ 1 ≫
σ 2 it is advisable to reduce the model order.
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We can expect the reduced order model to describe the system “well”. A

truncation of x2 (see the book p.219) yields

x1(k+ 1) =

(

−0.0348+
0.12722

1+ 0.4652

)

x1(k) +

(

0.8660+
0.1272 ⋅ 0.0049

1+ 0.4652

)

u(k)

= −0.0237x1(k) + 0.8664u(k)

y(k) =

(

0.8660+
0.0049 ⋅ 0.1272

1+ 0.4652

)

x1(k) +
0.00492

1+ 0.4652
u(k)

= 0.8664x1(k) + 0.000016uk

The reduced order transfer-function becomes

H2(z) =
0.000016z+ 0.7507

z+ 0.02372

Sometimes it is a concern if this transfer function does not have the same

static gain as H(z). Therefore we may compensate for this and obtain:

H3(z) =
H2(z)

H2(e0)
=
0.000022z+ 1.024

z+ 0.02372

8. The impulse response coefficients (or Markov parameters) {hk}
∞
k=1 form the

transfer function

H(z) =

∞∑

k=1

hkz
−k, hk = CA

k−1B

a. Show that a Hankel matrix of these coefficients can be factorised as

H
(k)
r,s =









hk+1 hk+2 ⋅ ⋅ ⋅ hk+s

hk+2 hk+3 ⋅ ⋅ ⋅ hk+s+1
...

...
. . .

...

hk+r hk+r+1 ⋅ ⋅ ⋅ hk+r+s−1









=








C

CA
...

CAr−1







Ak ( B AB . . . As−1B )

(1 p)

b. How can this fact be exploited for system identification purposes? (1 p)

Solution
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a. One way is to verify the factorization property by direct substitution of

Markov parameters hk = CA
k−1B into the Hankel matrix.

H
(k)
r,s =









hk+1 hk+2 ⋅ ⋅ ⋅ hk+s

hk+2 hk+3 ⋅ ⋅ ⋅ hk+s+1
...

...
. . .

...

hk+r hk+r+1 ⋅ ⋅ ⋅ hk+r+s−1









=








CAkB CAk+1B ⋅ ⋅ ⋅ CAk+s−1B

CAk+1B CAk+2B ⋅ ⋅ ⋅ CAk+sB
...

...
. . .

...

CAk+r−1B CAk+rB ⋅ ⋅ ⋅ CAk+r+s+2B








=








C

CA
...

CAr−1







Ak ( B AB . . . As−1B )

b. Using a numerical factorization such as the singular value decomposition it

is possible to find estimates of the extended observability and controllability

matrices. In turn, this information can be used to determine a state-space

realization {A, B,C}. In the factorization above, the matrix

Or =








C

CA
...

CAr−1








is the extended observability matrix and

Cs = ( B AB . . . As−1B )

the extended controllability matrix.

For k = 0, the factorization is then:

H
(0)
r,s = Or ⋅ Cs

= UΣVT

= UΣ1/2Σ1/2VT

Where the second inequality is obtained through singular value decompo-

sition. We then have:

Or = U ⋅ Σ1/2

[ O
†
r = Σ−1/2UT

Cs = Σ1/2 ⋅ VT

[ C
†
s = V

TΣ−1/2
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The dagger sign on e.g. O†r denotes the pseudo inverse.

The state space matrices are then, inserting the expressions for the pseu-

doinverse for the extended observability and controllability in for example

A = O†rH
(1)
r,s C

†
s and using the expressions above:

Ân = O
†
rH

(1)
r,s C

†
s

= Σ
−1/2
n UTn H

(1)
r,s VnΣ

−1/2
n

B̂n = Cs ⋅
[
Im$m 0m$(s−1)m

]T

Ĉn =

[(

Ip$p

0T
p$(s−1)p

)]T

Or
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