
1.

a. Poles: -1, -2. No zero. The system is stable.

b.
y′′ + 3y′ + 2y = u

c. The output signal is 1
(s+ 1)(s+ 2)

1
s
. Using inverse Laplace transform and

table lookup, we have y(t) = 1
2(1− 2e−t + e−2t).

2.

a. Introduce

f1(x1, x2, u) = x1(2− x2)− u
f2(x1, x2, u) = −x2(100− x1).

Since f1(100, 2, 0) = f2(100, 2, 0) = 0 the given vector is a stationary point. We
get

∂f1
∂x1

= 2− x2 = 0,

∂f1
∂x2

= −x1 = −100

∂f2
∂x1

= x2 = 2,

∂f2
∂x2

= −100 + x1 = 0,

∂f1
∂u

= −1

(
∆x1

∆x2

)
=
(

0 −100
2 0

)(
∆x1

∆x2

)
+
(
−1
0

)
u (1)

b. The characteristic equation becomes det(sI−A) = s2 +200 = 0 which has two
roots on the imaginary axis. The system is hence not asymptotically stable (it
is however stable).

c. Since the controllability matrix

Ws = (B AB ) =
(
−1 0
0 −2

)

is invertable, the system is controllable.

3.

a. See Figur 1.

b. See Figur 2.
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Figur 1 Blockdiagram for state-feedback with Kalman filter.
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Figur 2 Blockdiagram for state-feedback with Kalman filter with integral. action.

4 a. IFrom the figure of the periodic outsignal we can determine a period of approx.
1.6, i.e. the angular frequency is ω ≈ 2π

1.6 ≈ 4, an the amplitude A ≈ 1.5. The
phase is given by

sin(4 · 14 + φ) = −1

4 · 14 + φ = −π2 + n · 2π, n ∈ Z.

By choosing n = 9 we get

φ = −π2 + 9 · 2π − 4 · 14 = −58◦.

Looking at the Bode-diagram at frequency ω = 4 gives a phase of ≈ −58◦ and
a gain of ≈ 0.7. Therefore the signal is

u(t) = 1.5
0.7 sin(4t) ≈ 2 sin(4t).

b. The systems static gain is 3, the diagram breaks down one (= slope 1) time at
frequency 1, goes up one time at frequency 10 and in the end goes down two
time at frequency 500. Therefore the transfer function is given by

G(s) = 3
s

10 + 1
(s+ 1)

(
s

500 + 1
)2 .
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c. The system is stable by assumption. The final value theorem gives

e(t) = lim
s→0

s
1

1 +GK

1
s

= 1
1 +G(0)K .

From the bode-diagram we get G(0) = 3, therefore the stationary error will be
e∞ = 1

1+3K .

3



5.

a. In the Bode-diagram we can see that K0, i.e. the process gain margin is

K0 = 1
|GP (iω0)| ≈ 1/0.005 = 200,

at ω0 ≈ 14. The period time is

T0 = 1
ω0
2π
≈ 0.4.

(More precisely K0 ≈ 204 och T0 ≈ 0.44.) This gives the controller

GP = 0.5K0 ≈ 100, GPI = 0.45K0

(
1 + 1.2

sT0

)
≈ 90

(
1 + 3

s

)
.

Observe that the answer can be checked by the help of the Bode-diagram in
problem b.

b. Because the process is asymptotically stable and the PI-controller has only one
pol which lies in the origin, both open loop systems no poles in the right half
plane och no multiple poles on the imaginary axis. Therefore, we can use the
Nyquist theorem, which says that the closed loop system with a P-controller is
stable (the gain margin is 2 by construction) and the closed loop system with
the PI-controller is unstable (the gain margin is larger than 1).

c. We can see that the PI-regular gives a negative phase margin and an unstable
closed loop system. Even the P-regulator as a much too small phase margin
for a good control. A rule of thumb says that the phase margin should be at
least 30 degrees. Possible enhancements are to decrease the gain and accept a
lower cut-off frequency and a slower system, or to use a PID-controller which
can increase the phase.

6 a. We start with determining the system’s cut-off frequency

|G(iωc)| =
4√

ω2
c + 4

= 1

ωc =
√

12.

At this frequency the phase is

argG(iω0) = −arg(iω0 + 2) = − arctan
(
ω0
2

)
= − arctan

(√
12
2

)
= − arctan

(√
3
)

= −π3 .

Therefore the phase margin becomes φm = 2π
3 and the delay margin

Lm = φm
ω0

= 2π
3
√

12
≈ 0.60 s.
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b. To get a delay margin of 0.75 seconds, we need to have

φm = Lmωc = 0.75
√

12 ≈ 2.60.

The gain margin has to increase by

∆φm = 2.60− 2π
3 ≈ 29◦,

which gives N = 3. Moreover, the phase curve’s top should lie at ωc, which
gives

b = ωc√
N

=
√

12√
3

= 2.

At this frequency the compensator’s gain KK

√
N should be one, which gives

KK = 1√
N

= 1√
3
.

The lead-compensator becomes

Gnyr (s) =
√

3 s+ 2
s+ 2 · 3 ≈ 1.73s+ 2

s+ 6 .

7.

a. This controller is called Otto-Smith controller and the idea behind is to use it
for systems with time delays of the form e−sLG(s). The hope is that one can
design a controller just as for the process G(s) which has no delay.

b.

U = GR0(R− Y + Y 1− Y 2) = GR0(E + ĜP (e−sL − 1)U)

⇒ U = GR0

1 + (1− e−sL)ĜPGR0
E

Det finns en liknande räkning i övningsuppgift 7.9b.

c.

GR(s) =
1
s

1 + (1− e−sL) 1
s(s+1)

1
s

= s+ 1
s(s+ 1) + 1−e−sL

s

→ 1
L
, då s→ 0.

For L = 0 there is integral action, which we can see from the figure because
have GR(s) = GR0(s) as controller. For L > 0, there is no integral action
because GR(s) doesn’t tend to ∞ as s → 0. That is just the same as we have
seen it in Lab 3 an its exercises 7.5 and 7.7.
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