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Contents and Purpose

Accelerometer design

Atomic Force Microscopes (AFM)

AFM Model

G(s), Bode and Nyquist diagram
Control design

I
PID - active resonance damping

Some repetition of Laplace, Bode, Nyquist, PID-design using a
nano example

Show that you already now have the tools to do a non-trivial
control design

“Control can be used to overcome physical design restrictions”
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Improved accelerometers using control

Want the accelerometer to be both sensitive and fast

Simple model of an accelerometer without control

mẍ + cẋ + kx = mu, u = acceleration

Laplace: (ms2 + cs+ k)X (s) = mU(s)
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Accelerometer Analysis

X (s) =
1

s2 + c/ms+ k/m
U(s) =

1

s2 + 2ζ ω 0s+ω 2
0

U(s)

Stationary solution u = u0 gives x = m
k
u0

Sensitivity of the accelerometer: S ∼ m/k

Bandwidth: ω 0 =
√

k/m

Hence there is a fundamental design relation

ω 20S = constant

Compromise between sensitivity S and bandwidth ω 0
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The advantage with Force Feedback

The constraint ω 20S = constant is eliminated if force feedback is
used !

The mass does not need to move, the sensor information is
found in the control signal

Bandwidth of a sensor with force feedback depends primarly on
the tightness of the control loop

Relieves the designer of a difficult compromise

Higher sensitivity/bandwidth achievable
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AFM

Using an atomic force microscope (AFM) one can measure
molecular forces between a fine tip and a surface

Force resolution: 0.1-1 nN, Distance resolution: 0.01 nm
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Cantilever Model

The cantilever is an oscillative system, similar to the
mass-spring system above

P(s) =
ω 20

s2 + 2ζ ω 0s+ω 2
0

=
ω 20

s2 +ω 0s/Q +ω 2
0

where Q = 1/(2ζ ) is called the Q-factor of the resonance.

Can have Q = 10− 1000 for cantilevers

Want zero stationary error, hence need integrator in the
controller
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Cantilever I-control

Lets start with an I-controller

C(s) =
ki

s

With an I-controller the step-response error e satisfies
∫ ∞

0

e(t) = 1/ki (nice exercise)

What is the largest ki that can be used?

Draw Bode and Nyquist diagram of

G0(s) = C(s)P(s) =
ki

s

ω 20
s2 +ω 0s/Q +ω 2

0

(Blackboard)
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Bode diagram, I-control
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ki = ω c = 0.005ω 0 (blue) , ω 0 = 1

ki = ω c = 0.02ω 0 (red)
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Nyquist diagram, I-control
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ki = ω c = 0.005ω 0 (blue), will give stable closed loop

ki = ω c = 0.02ω 0 (red), will give unstable closed loop
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Cantilever I-control

Nyquist diagram of G0(s) = C(s)P(s) intersects negative real
axis for s = iω 0, and we have

G(iω 0) = −kiQ/ω 0

Stability condition: ki < ω 0/Q
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Cantilever I-control

Alternative derivation: Closed loop characteristic polynomial is

s3 +ω 0s
2/Q +ω 20s+ kiω

2
0

Third order polynomial s3 + as2 + bs+ c stable if a, b, c > 0 and
ab > c so we have stability when

ω 0/Q ⋅ ω 20 > kiω
2
0

Stability condition: ki < ω 0/Q (same as above)
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Cantilever I-control

For low frequencies we have G0(s) ( ki/s. If we define closed
loop bandwidth as the frequency ω c where
1 = pG0(iω c)p = ki/ω c we get

ω c < ω 0/Q

With Q = 100 the achievable bandwidth is only ω c = 0.01ω 0

Not very good. It works, but it is slooow
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Simulations, I-control
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Simulations with Q = 100,ω 0 = 1 and

ki = ω c = 0.005ω 0 (blue, stable)

ki = ω c = 0.02ω 0 (red, unstable)

The simulations support the theoretical analysis
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Cantilevers, PID design

Let’s try a PID design instead

C(s) = kds+ k+ ki/s

We get

P(s)C(s) =
kds

2 + ks+ ki

s(s2 +ω 0s/Q +ω 2
0
)

Idea: choose PID parameters kd, k, ki so characteristic
polynomial becomes (s+ω 1)(s

2 + 2ζ 1ω 1s+ω 21)

This gives
kd = (2ζ 1 + 1)ω 1 −ω 0/Q, k = (2ζ 1 + 1)ω

2
1 −ω 20, ki = ω 3

1

This is a well-damped closed loop, where the parameter ω 1 is
related to the closed loop bandwidth
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Cantilevers

Simulation with ω 1 = 2ω 0
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More than 100 times faster!

Physical interpretation is that feedback control has virtually
“changed the stiffness and mass” of the cantilever
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PID design - Limitations

More simulations show that control signal magnitude is large if
ω 1 >> ω 0, so there is an upper limit in practice, due to e.g.

control signal saturation

measurement noise amplification

So there are limits to the magic

Limits are due to how good control loop one can design

Sub-nano accuracy achievable
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Conclusions

The control theory you have learned so far can be used to
achieve acceptable control of an AFM

Control can achieve “virtual change of physical
parameters”

Presentation based on material from Karl Johan Åström, Lund
and University of Santa Barbara cooperation on Atomic Force
Microscope control design
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Extra: Root Locus
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PID design has closed loop poles in −2, −1.4± 1.4i
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